Annotation of rpl/lapack/lapack/dggevx.f, revision 1.8

1.8     ! bertrand    1: *> \brief <b> DGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGGEVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggevx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggevx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggevx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
        !            22: *                          ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
        !            23: *                          IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
        !            24: *                          RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
        !            25: * 
        !            26: *       .. Scalar Arguments ..
        !            27: *       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
        !            28: *       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
        !            29: *       DOUBLE PRECISION   ABNRM, BBNRM
        !            30: *       ..
        !            31: *       .. Array Arguments ..
        !            32: *       LOGICAL            BWORK( * )
        !            33: *       INTEGER            IWORK( * )
        !            34: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !            35: *      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
        !            36: *      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
        !            37: *      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
        !            38: *       ..
        !            39: *  
        !            40: *
        !            41: *> \par Purpose:
        !            42: *  =============
        !            43: *>
        !            44: *> \verbatim
        !            45: *>
        !            46: *> DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
        !            47: *> the generalized eigenvalues, and optionally, the left and/or right
        !            48: *> generalized eigenvectors.
        !            49: *>
        !            50: *> Optionally also, it computes a balancing transformation to improve
        !            51: *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
        !            52: *> LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
        !            53: *> the eigenvalues (RCONDE), and reciprocal condition numbers for the
        !            54: *> right eigenvectors (RCONDV).
        !            55: *>
        !            56: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
        !            57: *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
        !            58: *> singular. It is usually represented as the pair (alpha,beta), as
        !            59: *> there is a reasonable interpretation for beta=0, and even for both
        !            60: *> being zero.
        !            61: *>
        !            62: *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
        !            63: *> of (A,B) satisfies
        !            64: *>
        !            65: *>                  A * v(j) = lambda(j) * B * v(j) .
        !            66: *>
        !            67: *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
        !            68: *> of (A,B) satisfies
        !            69: *>
        !            70: *>                  u(j)**H * A  = lambda(j) * u(j)**H * B.
        !            71: *>
        !            72: *> where u(j)**H is the conjugate-transpose of u(j).
        !            73: *>
        !            74: *> \endverbatim
        !            75: *
        !            76: *  Arguments:
        !            77: *  ==========
        !            78: *
        !            79: *> \param[in] BALANC
        !            80: *> \verbatim
        !            81: *>          BALANC is CHARACTER*1
        !            82: *>          Specifies the balance option to be performed.
        !            83: *>          = 'N':  do not diagonally scale or permute;
        !            84: *>          = 'P':  permute only;
        !            85: *>          = 'S':  scale only;
        !            86: *>          = 'B':  both permute and scale.
        !            87: *>          Computed reciprocal condition numbers will be for the
        !            88: *>          matrices after permuting and/or balancing. Permuting does
        !            89: *>          not change condition numbers (in exact arithmetic), but
        !            90: *>          balancing does.
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[in] JOBVL
        !            94: *> \verbatim
        !            95: *>          JOBVL is CHARACTER*1
        !            96: *>          = 'N':  do not compute the left generalized eigenvectors;
        !            97: *>          = 'V':  compute the left generalized eigenvectors.
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in] JOBVR
        !           101: *> \verbatim
        !           102: *>          JOBVR is CHARACTER*1
        !           103: *>          = 'N':  do not compute the right generalized eigenvectors;
        !           104: *>          = 'V':  compute the right generalized eigenvectors.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] SENSE
        !           108: *> \verbatim
        !           109: *>          SENSE is CHARACTER*1
        !           110: *>          Determines which reciprocal condition numbers are computed.
        !           111: *>          = 'N': none are computed;
        !           112: *>          = 'E': computed for eigenvalues only;
        !           113: *>          = 'V': computed for eigenvectors only;
        !           114: *>          = 'B': computed for eigenvalues and eigenvectors.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in] N
        !           118: *> \verbatim
        !           119: *>          N is INTEGER
        !           120: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
        !           121: *> \endverbatim
        !           122: *>
        !           123: *> \param[in,out] A
        !           124: *> \verbatim
        !           125: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
        !           126: *>          On entry, the matrix A in the pair (A,B).
        !           127: *>          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
        !           128: *>          or both, then A contains the first part of the real Schur
        !           129: *>          form of the "balanced" versions of the input A and B.
        !           130: *> \endverbatim
        !           131: *>
        !           132: *> \param[in] LDA
        !           133: *> \verbatim
        !           134: *>          LDA is INTEGER
        !           135: *>          The leading dimension of A.  LDA >= max(1,N).
        !           136: *> \endverbatim
        !           137: *>
        !           138: *> \param[in,out] B
        !           139: *> \verbatim
        !           140: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
        !           141: *>          On entry, the matrix B in the pair (A,B).
        !           142: *>          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
        !           143: *>          or both, then B contains the second part of the real Schur
        !           144: *>          form of the "balanced" versions of the input A and B.
        !           145: *> \endverbatim
        !           146: *>
        !           147: *> \param[in] LDB
        !           148: *> \verbatim
        !           149: *>          LDB is INTEGER
        !           150: *>          The leading dimension of B.  LDB >= max(1,N).
        !           151: *> \endverbatim
        !           152: *>
        !           153: *> \param[out] ALPHAR
        !           154: *> \verbatim
        !           155: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[out] ALPHAI
        !           159: *> \verbatim
        !           160: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
        !           161: *> \endverbatim
        !           162: *>
        !           163: *> \param[out] BETA
        !           164: *> \verbatim
        !           165: *>          BETA is DOUBLE PRECISION array, dimension (N)
        !           166: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
        !           167: *>          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
        !           168: *>          the j-th eigenvalue is real; if positive, then the j-th and
        !           169: *>          (j+1)-st eigenvalues are a complex conjugate pair, with
        !           170: *>          ALPHAI(j+1) negative.
        !           171: *>
        !           172: *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
        !           173: *>          may easily over- or underflow, and BETA(j) may even be zero.
        !           174: *>          Thus, the user should avoid naively computing the ratio
        !           175: *>          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
        !           176: *>          than and usually comparable with norm(A) in magnitude, and
        !           177: *>          BETA always less than and usually comparable with norm(B).
        !           178: *> \endverbatim
        !           179: *>
        !           180: *> \param[out] VL
        !           181: *> \verbatim
        !           182: *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
        !           183: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
        !           184: *>          after another in the columns of VL, in the same order as
        !           185: *>          their eigenvalues. If the j-th eigenvalue is real, then
        !           186: *>          u(j) = VL(:,j), the j-th column of VL. If the j-th and
        !           187: *>          (j+1)-th eigenvalues form a complex conjugate pair, then
        !           188: *>          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
        !           189: *>          Each eigenvector will be scaled so the largest component have
        !           190: *>          abs(real part) + abs(imag. part) = 1.
        !           191: *>          Not referenced if JOBVL = 'N'.
        !           192: *> \endverbatim
        !           193: *>
        !           194: *> \param[in] LDVL
        !           195: *> \verbatim
        !           196: *>          LDVL is INTEGER
        !           197: *>          The leading dimension of the matrix VL. LDVL >= 1, and
        !           198: *>          if JOBVL = 'V', LDVL >= N.
        !           199: *> \endverbatim
        !           200: *>
        !           201: *> \param[out] VR
        !           202: *> \verbatim
        !           203: *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
        !           204: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
        !           205: *>          after another in the columns of VR, in the same order as
        !           206: *>          their eigenvalues. If the j-th eigenvalue is real, then
        !           207: *>          v(j) = VR(:,j), the j-th column of VR. If the j-th and
        !           208: *>          (j+1)-th eigenvalues form a complex conjugate pair, then
        !           209: *>          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
        !           210: *>          Each eigenvector will be scaled so the largest component have
        !           211: *>          abs(real part) + abs(imag. part) = 1.
        !           212: *>          Not referenced if JOBVR = 'N'.
        !           213: *> \endverbatim
        !           214: *>
        !           215: *> \param[in] LDVR
        !           216: *> \verbatim
        !           217: *>          LDVR is INTEGER
        !           218: *>          The leading dimension of the matrix VR. LDVR >= 1, and
        !           219: *>          if JOBVR = 'V', LDVR >= N.
        !           220: *> \endverbatim
        !           221: *>
        !           222: *> \param[out] ILO
        !           223: *> \verbatim
        !           224: *>          ILO is INTEGER
        !           225: *> \endverbatim
        !           226: *>
        !           227: *> \param[out] IHI
        !           228: *> \verbatim
        !           229: *>          IHI is INTEGER
        !           230: *>          ILO and IHI are integer values such that on exit
        !           231: *>          A(i,j) = 0 and B(i,j) = 0 if i > j and
        !           232: *>          j = 1,...,ILO-1 or i = IHI+1,...,N.
        !           233: *>          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
        !           234: *> \endverbatim
        !           235: *>
        !           236: *> \param[out] LSCALE
        !           237: *> \verbatim
        !           238: *>          LSCALE is DOUBLE PRECISION array, dimension (N)
        !           239: *>          Details of the permutations and scaling factors applied
        !           240: *>          to the left side of A and B.  If PL(j) is the index of the
        !           241: *>          row interchanged with row j, and DL(j) is the scaling
        !           242: *>          factor applied to row j, then
        !           243: *>            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
        !           244: *>                      = DL(j)  for j = ILO,...,IHI
        !           245: *>                      = PL(j)  for j = IHI+1,...,N.
        !           246: *>          The order in which the interchanges are made is N to IHI+1,
        !           247: *>          then 1 to ILO-1.
        !           248: *> \endverbatim
        !           249: *>
        !           250: *> \param[out] RSCALE
        !           251: *> \verbatim
        !           252: *>          RSCALE is DOUBLE PRECISION array, dimension (N)
        !           253: *>          Details of the permutations and scaling factors applied
        !           254: *>          to the right side of A and B.  If PR(j) is the index of the
        !           255: *>          column interchanged with column j, and DR(j) is the scaling
        !           256: *>          factor applied to column j, then
        !           257: *>            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
        !           258: *>                      = DR(j)  for j = ILO,...,IHI
        !           259: *>                      = PR(j)  for j = IHI+1,...,N
        !           260: *>          The order in which the interchanges are made is N to IHI+1,
        !           261: *>          then 1 to ILO-1.
        !           262: *> \endverbatim
        !           263: *>
        !           264: *> \param[out] ABNRM
        !           265: *> \verbatim
        !           266: *>          ABNRM is DOUBLE PRECISION
        !           267: *>          The one-norm of the balanced matrix A.
        !           268: *> \endverbatim
        !           269: *>
        !           270: *> \param[out] BBNRM
        !           271: *> \verbatim
        !           272: *>          BBNRM is DOUBLE PRECISION
        !           273: *>          The one-norm of the balanced matrix B.
        !           274: *> \endverbatim
        !           275: *>
        !           276: *> \param[out] RCONDE
        !           277: *> \verbatim
        !           278: *>          RCONDE is DOUBLE PRECISION array, dimension (N)
        !           279: *>          If SENSE = 'E' or 'B', the reciprocal condition numbers of
        !           280: *>          the eigenvalues, stored in consecutive elements of the array.
        !           281: *>          For a complex conjugate pair of eigenvalues two consecutive
        !           282: *>          elements of RCONDE are set to the same value. Thus RCONDE(j),
        !           283: *>          RCONDV(j), and the j-th columns of VL and VR all correspond
        !           284: *>          to the j-th eigenpair.
        !           285: *>          If SENSE = 'N or 'V', RCONDE is not referenced.
        !           286: *> \endverbatim
        !           287: *>
        !           288: *> \param[out] RCONDV
        !           289: *> \verbatim
        !           290: *>          RCONDV is DOUBLE PRECISION array, dimension (N)
        !           291: *>          If SENSE = 'V' or 'B', the estimated reciprocal condition
        !           292: *>          numbers of the eigenvectors, stored in consecutive elements
        !           293: *>          of the array. For a complex eigenvector two consecutive
        !           294: *>          elements of RCONDV are set to the same value. If the
        !           295: *>          eigenvalues cannot be reordered to compute RCONDV(j),
        !           296: *>          RCONDV(j) is set to 0; this can only occur when the true
        !           297: *>          value would be very small anyway.
        !           298: *>          If SENSE = 'N' or 'E', RCONDV is not referenced.
        !           299: *> \endverbatim
        !           300: *>
        !           301: *> \param[out] WORK
        !           302: *> \verbatim
        !           303: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           304: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           305: *> \endverbatim
        !           306: *>
        !           307: *> \param[in] LWORK
        !           308: *> \verbatim
        !           309: *>          LWORK is INTEGER
        !           310: *>          The dimension of the array WORK. LWORK >= max(1,2*N).
        !           311: *>          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
        !           312: *>          LWORK >= max(1,6*N).
        !           313: *>          If SENSE = 'E' or 'B', LWORK >= max(1,10*N).
        !           314: *>          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
        !           315: *>
        !           316: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           317: *>          only calculates the optimal size of the WORK array, returns
        !           318: *>          this value as the first entry of the WORK array, and no error
        !           319: *>          message related to LWORK is issued by XERBLA.
        !           320: *> \endverbatim
        !           321: *>
        !           322: *> \param[out] IWORK
        !           323: *> \verbatim
        !           324: *>          IWORK is INTEGER array, dimension (N+6)
        !           325: *>          If SENSE = 'E', IWORK is not referenced.
        !           326: *> \endverbatim
        !           327: *>
        !           328: *> \param[out] BWORK
        !           329: *> \verbatim
        !           330: *>          BWORK is LOGICAL array, dimension (N)
        !           331: *>          If SENSE = 'N', BWORK is not referenced.
        !           332: *> \endverbatim
        !           333: *>
        !           334: *> \param[out] INFO
        !           335: *> \verbatim
        !           336: *>          INFO is INTEGER
        !           337: *>          = 0:  successful exit
        !           338: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           339: *>          = 1,...,N:
        !           340: *>                The QZ iteration failed.  No eigenvectors have been
        !           341: *>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
        !           342: *>                should be correct for j=INFO+1,...,N.
        !           343: *>          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
        !           344: *>                =N+2: error return from DTGEVC.
        !           345: *> \endverbatim
        !           346: *
        !           347: *  Authors:
        !           348: *  ========
        !           349: *
        !           350: *> \author Univ. of Tennessee 
        !           351: *> \author Univ. of California Berkeley 
        !           352: *> \author Univ. of Colorado Denver 
        !           353: *> \author NAG Ltd. 
        !           354: *
        !           355: *> \date November 2011
        !           356: *
        !           357: *> \ingroup doubleGEeigen
        !           358: *
        !           359: *> \par Further Details:
        !           360: *  =====================
        !           361: *>
        !           362: *> \verbatim
        !           363: *>
        !           364: *>  Balancing a matrix pair (A,B) includes, first, permuting rows and
        !           365: *>  columns to isolate eigenvalues, second, applying diagonal similarity
        !           366: *>  transformation to the rows and columns to make the rows and columns
        !           367: *>  as close in norm as possible. The computed reciprocal condition
        !           368: *>  numbers correspond to the balanced matrix. Permuting rows and columns
        !           369: *>  will not change the condition numbers (in exact arithmetic) but
        !           370: *>  diagonal scaling will.  For further explanation of balancing, see
        !           371: *>  section 4.11.1.2 of LAPACK Users' Guide.
        !           372: *>
        !           373: *>  An approximate error bound on the chordal distance between the i-th
        !           374: *>  computed generalized eigenvalue w and the corresponding exact
        !           375: *>  eigenvalue lambda is
        !           376: *>
        !           377: *>       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
        !           378: *>
        !           379: *>  An approximate error bound for the angle between the i-th computed
        !           380: *>  eigenvector VL(i) or VR(i) is given by
        !           381: *>
        !           382: *>       EPS * norm(ABNRM, BBNRM) / DIF(i).
        !           383: *>
        !           384: *>  For further explanation of the reciprocal condition numbers RCONDE
        !           385: *>  and RCONDV, see section 4.11 of LAPACK User's Guide.
        !           386: *> \endverbatim
        !           387: *>
        !           388: *  =====================================================================
1.1       bertrand  389:       SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
                    390:      $                   ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
                    391:      $                   IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
                    392:      $                   RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
                    393: *
1.8     ! bertrand  394: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  395: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    396: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  397: *     November 2011
1.1       bertrand  398: *
                    399: *     .. Scalar Arguments ..
                    400:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
                    401:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                    402:       DOUBLE PRECISION   ABNRM, BBNRM
                    403: *     ..
                    404: *     .. Array Arguments ..
                    405:       LOGICAL            BWORK( * )
                    406:       INTEGER            IWORK( * )
                    407:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                    408:      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
                    409:      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
                    410:      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
                    411: *     ..
                    412: *
                    413: *  =====================================================================
                    414: *
                    415: *     .. Parameters ..
                    416:       DOUBLE PRECISION   ZERO, ONE
                    417:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    418: *     ..
                    419: *     .. Local Scalars ..
                    420:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
                    421:      $                   PAIR, WANTSB, WANTSE, WANTSN, WANTSV
                    422:       CHARACTER          CHTEMP
                    423:       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
                    424:      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK,
                    425:      $                   MINWRK, MM
                    426:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
                    427:      $                   SMLNUM, TEMP
                    428: *     ..
                    429: *     .. Local Arrays ..
                    430:       LOGICAL            LDUMMA( 1 )
                    431: *     ..
                    432: *     .. External Subroutines ..
                    433:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
                    434:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGEVC,
                    435:      $                   DTGSNA, XERBLA 
                    436: *     ..
                    437: *     .. External Functions ..
                    438:       LOGICAL            LSAME
                    439:       INTEGER            ILAENV
                    440:       DOUBLE PRECISION   DLAMCH, DLANGE
                    441:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    442: *     ..
                    443: *     .. Intrinsic Functions ..
                    444:       INTRINSIC          ABS, MAX, SQRT
                    445: *     ..
                    446: *     .. Executable Statements ..
                    447: *
                    448: *     Decode the input arguments
                    449: *
                    450:       IF( LSAME( JOBVL, 'N' ) ) THEN
                    451:          IJOBVL = 1
                    452:          ILVL = .FALSE.
                    453:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
                    454:          IJOBVL = 2
                    455:          ILVL = .TRUE.
                    456:       ELSE
                    457:          IJOBVL = -1
                    458:          ILVL = .FALSE.
                    459:       END IF
                    460: *
                    461:       IF( LSAME( JOBVR, 'N' ) ) THEN
                    462:          IJOBVR = 1
                    463:          ILVR = .FALSE.
                    464:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
                    465:          IJOBVR = 2
                    466:          ILVR = .TRUE.
                    467:       ELSE
                    468:          IJOBVR = -1
                    469:          ILVR = .FALSE.
                    470:       END IF
                    471:       ILV = ILVL .OR. ILVR
                    472: *
                    473:       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
                    474:       WANTSN = LSAME( SENSE, 'N' )
                    475:       WANTSE = LSAME( SENSE, 'E' )
                    476:       WANTSV = LSAME( SENSE, 'V' )
                    477:       WANTSB = LSAME( SENSE, 'B' )
                    478: *
                    479: *     Test the input arguments
                    480: *
                    481:       INFO = 0
                    482:       LQUERY = ( LWORK.EQ.-1 )
                    483:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
                    484:      $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
                    485:      $     THEN
                    486:          INFO = -1
                    487:       ELSE IF( IJOBVL.LE.0 ) THEN
                    488:          INFO = -2
                    489:       ELSE IF( IJOBVR.LE.0 ) THEN
                    490:          INFO = -3
                    491:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
                    492:      $          THEN
                    493:          INFO = -4
                    494:       ELSE IF( N.LT.0 ) THEN
                    495:          INFO = -5
                    496:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    497:          INFO = -7
                    498:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    499:          INFO = -9
                    500:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
                    501:          INFO = -14
                    502:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
                    503:          INFO = -16
                    504:       END IF
                    505: *
                    506: *     Compute workspace
                    507: *      (Note: Comments in the code beginning "Workspace:" describe the
                    508: *       minimal amount of workspace needed at that point in the code,
                    509: *       as well as the preferred amount for good performance.
                    510: *       NB refers to the optimal block size for the immediately
                    511: *       following subroutine, as returned by ILAENV. The workspace is
                    512: *       computed assuming ILO = 1 and IHI = N, the worst case.)
                    513: *
                    514:       IF( INFO.EQ.0 ) THEN
                    515:          IF( N.EQ.0 ) THEN
                    516:             MINWRK = 1
                    517:             MAXWRK = 1
                    518:          ELSE
                    519:             IF( NOSCL .AND. .NOT.ILV ) THEN
                    520:                MINWRK = 2*N
                    521:             ELSE
                    522:                MINWRK = 6*N
                    523:             END IF
                    524:             IF( WANTSE .OR. WANTSB ) THEN
                    525:                MINWRK = 10*N
                    526:             END IF
                    527:             IF( WANTSV .OR. WANTSB ) THEN
                    528:                MINWRK = MAX( MINWRK, 2*N*( N + 4 ) + 16 )
                    529:             END IF
                    530:             MAXWRK = MINWRK
                    531:             MAXWRK = MAX( MAXWRK,
                    532:      $                    N + N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) )
                    533:             MAXWRK = MAX( MAXWRK,
                    534:      $                    N + N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) )
                    535:             IF( ILVL ) THEN
                    536:                MAXWRK = MAX( MAXWRK, N +
                    537:      $                       N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, 0 ) )
                    538:             END IF
                    539:          END IF
                    540:          WORK( 1 ) = MAXWRK
                    541: *
                    542:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    543:             INFO = -26
                    544:          END IF
                    545:       END IF
                    546: *
                    547:       IF( INFO.NE.0 ) THEN
                    548:          CALL XERBLA( 'DGGEVX', -INFO )
                    549:          RETURN
                    550:       ELSE IF( LQUERY ) THEN
                    551:          RETURN
                    552:       END IF
                    553: *
                    554: *     Quick return if possible
                    555: *
                    556:       IF( N.EQ.0 )
                    557:      $   RETURN
                    558: *
                    559: *
                    560: *     Get machine constants
                    561: *
                    562:       EPS = DLAMCH( 'P' )
                    563:       SMLNUM = DLAMCH( 'S' )
                    564:       BIGNUM = ONE / SMLNUM
                    565:       CALL DLABAD( SMLNUM, BIGNUM )
                    566:       SMLNUM = SQRT( SMLNUM ) / EPS
                    567:       BIGNUM = ONE / SMLNUM
                    568: *
                    569: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    570: *
                    571:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    572:       ILASCL = .FALSE.
                    573:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    574:          ANRMTO = SMLNUM
                    575:          ILASCL = .TRUE.
                    576:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    577:          ANRMTO = BIGNUM
                    578:          ILASCL = .TRUE.
                    579:       END IF
                    580:       IF( ILASCL )
                    581:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    582: *
                    583: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    584: *
                    585:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    586:       ILBSCL = .FALSE.
                    587:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    588:          BNRMTO = SMLNUM
                    589:          ILBSCL = .TRUE.
                    590:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    591:          BNRMTO = BIGNUM
                    592:          ILBSCL = .TRUE.
                    593:       END IF
                    594:       IF( ILBSCL )
                    595:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    596: *
                    597: *     Permute and/or balance the matrix pair (A,B)
                    598: *     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
                    599: *
                    600:       CALL DGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
                    601:      $             WORK, IERR )
                    602: *
                    603: *     Compute ABNRM and BBNRM
                    604: *
                    605:       ABNRM = DLANGE( '1', N, N, A, LDA, WORK( 1 ) )
                    606:       IF( ILASCL ) THEN
                    607:          WORK( 1 ) = ABNRM
                    608:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, WORK( 1 ), 1,
                    609:      $                IERR )
                    610:          ABNRM = WORK( 1 )
                    611:       END IF
                    612: *
                    613:       BBNRM = DLANGE( '1', N, N, B, LDB, WORK( 1 ) )
                    614:       IF( ILBSCL ) THEN
                    615:          WORK( 1 ) = BBNRM
                    616:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, WORK( 1 ), 1,
                    617:      $                IERR )
                    618:          BBNRM = WORK( 1 )
                    619:       END IF
                    620: *
                    621: *     Reduce B to triangular form (QR decomposition of B)
                    622: *     (Workspace: need N, prefer N*NB )
                    623: *
                    624:       IROWS = IHI + 1 - ILO
                    625:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    626:          ICOLS = N + 1 - ILO
                    627:       ELSE
                    628:          ICOLS = IROWS
                    629:       END IF
                    630:       ITAU = 1
                    631:       IWRK = ITAU + IROWS
                    632:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    633:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    634: *
                    635: *     Apply the orthogonal transformation to A
                    636: *     (Workspace: need N, prefer N*NB)
                    637: *
                    638:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    639:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    640:      $             LWORK+1-IWRK, IERR )
                    641: *
                    642: *     Initialize VL and/or VR
                    643: *     (Workspace: need N, prefer N*NB)
                    644: *
                    645:       IF( ILVL ) THEN
                    646:          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
                    647:          IF( IROWS.GT.1 ) THEN
                    648:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    649:      $                   VL( ILO+1, ILO ), LDVL )
                    650:          END IF
                    651:          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
                    652:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    653:       END IF
                    654: *
                    655:       IF( ILVR )
                    656:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
                    657: *
                    658: *     Reduce to generalized Hessenberg form
                    659: *     (Workspace: none needed)
                    660: *
                    661:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    662: *
                    663: *        Eigenvectors requested -- work on whole matrix.
                    664: *
                    665:          CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
                    666:      $                LDVL, VR, LDVR, IERR )
                    667:       ELSE
                    668:          CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
                    669:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
                    670:       END IF
                    671: *
                    672: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
                    673: *     Schur forms and Schur vectors)
                    674: *     (Workspace: need N)
                    675: *
                    676:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    677:          CHTEMP = 'S'
                    678:       ELSE
                    679:          CHTEMP = 'E'
                    680:       END IF
                    681: *
                    682:       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
                    683:      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK,
                    684:      $             LWORK, IERR )
                    685:       IF( IERR.NE.0 ) THEN
                    686:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    687:             INFO = IERR
                    688:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    689:             INFO = IERR - N
                    690:          ELSE
                    691:             INFO = N + 1
                    692:          END IF
                    693:          GO TO 130
                    694:       END IF
                    695: *
                    696: *     Compute Eigenvectors and estimate condition numbers if desired
                    697: *     (Workspace: DTGEVC: need 6*N
                    698: *                 DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B',
                    699: *                         need N otherwise )
                    700: *
                    701:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    702:          IF( ILV ) THEN
                    703:             IF( ILVL ) THEN
                    704:                IF( ILVR ) THEN
                    705:                   CHTEMP = 'B'
                    706:                ELSE
                    707:                   CHTEMP = 'L'
                    708:                END IF
                    709:             ELSE
                    710:                CHTEMP = 'R'
                    711:             END IF
                    712: *
                    713:             CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
                    714:      $                   LDVL, VR, LDVR, N, IN, WORK, IERR )
                    715:             IF( IERR.NE.0 ) THEN
                    716:                INFO = N + 2
                    717:                GO TO 130
                    718:             END IF
                    719:          END IF
                    720: *
                    721:          IF( .NOT.WANTSN ) THEN
                    722: *
                    723: *           compute eigenvectors (DTGEVC) and estimate condition
                    724: *           numbers (DTGSNA). Note that the definition of the condition
                    725: *           number is not invariant under transformation (u,v) to
                    726: *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
                    727: *           Schur form (S,T), Q and Z are orthogonal matrices. In order
                    728: *           to avoid using extra 2*N*N workspace, we have to recalculate
                    729: *           eigenvectors and estimate one condition numbers at a time.
                    730: *
                    731:             PAIR = .FALSE.
                    732:             DO 20 I = 1, N
                    733: *
                    734:                IF( PAIR ) THEN
                    735:                   PAIR = .FALSE.
                    736:                   GO TO 20
                    737:                END IF
                    738:                MM = 1
                    739:                IF( I.LT.N ) THEN
                    740:                   IF( A( I+1, I ).NE.ZERO ) THEN
                    741:                      PAIR = .TRUE.
                    742:                      MM = 2
                    743:                   END IF
                    744:                END IF
                    745: *
                    746:                DO 10 J = 1, N
                    747:                   BWORK( J ) = .FALSE.
                    748:    10          CONTINUE
                    749:                IF( MM.EQ.1 ) THEN
                    750:                   BWORK( I ) = .TRUE.
                    751:                ELSE IF( MM.EQ.2 ) THEN
                    752:                   BWORK( I ) = .TRUE.
                    753:                   BWORK( I+1 ) = .TRUE.
                    754:                END IF
                    755: *
                    756:                IWRK = MM*N + 1
                    757:                IWRK1 = IWRK + MM*N
                    758: *
                    759: *              Compute a pair of left and right eigenvectors.
                    760: *              (compute workspace: need up to 4*N + 6*N)
                    761: *
                    762:                IF( WANTSE .OR. WANTSB ) THEN
                    763:                   CALL DTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
                    764:      $                         WORK( 1 ), N, WORK( IWRK ), N, MM, M,
                    765:      $                         WORK( IWRK1 ), IERR )
                    766:                   IF( IERR.NE.0 ) THEN
                    767:                      INFO = N + 2
                    768:                      GO TO 130
                    769:                   END IF
                    770:                END IF
                    771: *
                    772:                CALL DTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
                    773:      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
                    774:      $                      RCONDV( I ), MM, M, WORK( IWRK1 ),
                    775:      $                      LWORK-IWRK1+1, IWORK, IERR )
                    776: *
                    777:    20       CONTINUE
                    778:          END IF
                    779:       END IF
                    780: *
                    781: *     Undo balancing on VL and VR and normalization
                    782: *     (Workspace: none needed)
                    783: *
                    784:       IF( ILVL ) THEN
                    785:          CALL DGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
                    786:      $                LDVL, IERR )
                    787: *
                    788:          DO 70 JC = 1, N
                    789:             IF( ALPHAI( JC ).LT.ZERO )
                    790:      $         GO TO 70
                    791:             TEMP = ZERO
                    792:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    793:                DO 30 JR = 1, N
                    794:                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
                    795:    30          CONTINUE
                    796:             ELSE
                    797:                DO 40 JR = 1, N
                    798:                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
                    799:      $                   ABS( VL( JR, JC+1 ) ) )
                    800:    40          CONTINUE
                    801:             END IF
                    802:             IF( TEMP.LT.SMLNUM )
                    803:      $         GO TO 70
                    804:             TEMP = ONE / TEMP
                    805:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    806:                DO 50 JR = 1, N
                    807:                   VL( JR, JC ) = VL( JR, JC )*TEMP
                    808:    50          CONTINUE
                    809:             ELSE
                    810:                DO 60 JR = 1, N
                    811:                   VL( JR, JC ) = VL( JR, JC )*TEMP
                    812:                   VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
                    813:    60          CONTINUE
                    814:             END IF
                    815:    70    CONTINUE
                    816:       END IF
                    817:       IF( ILVR ) THEN
                    818:          CALL DGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
                    819:      $                LDVR, IERR )
                    820:          DO 120 JC = 1, N
                    821:             IF( ALPHAI( JC ).LT.ZERO )
                    822:      $         GO TO 120
                    823:             TEMP = ZERO
                    824:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    825:                DO 80 JR = 1, N
                    826:                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
                    827:    80          CONTINUE
                    828:             ELSE
                    829:                DO 90 JR = 1, N
                    830:                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
                    831:      $                   ABS( VR( JR, JC+1 ) ) )
                    832:    90          CONTINUE
                    833:             END IF
                    834:             IF( TEMP.LT.SMLNUM )
                    835:      $         GO TO 120
                    836:             TEMP = ONE / TEMP
                    837:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    838:                DO 100 JR = 1, N
                    839:                   VR( JR, JC ) = VR( JR, JC )*TEMP
                    840:   100          CONTINUE
                    841:             ELSE
                    842:                DO 110 JR = 1, N
                    843:                   VR( JR, JC ) = VR( JR, JC )*TEMP
                    844:                   VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
                    845:   110          CONTINUE
                    846:             END IF
                    847:   120    CONTINUE
                    848:       END IF
                    849: *
                    850: *     Undo scaling if necessary
                    851: *
                    852:       IF( ILASCL ) THEN
                    853:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
                    854:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
                    855:       END IF
                    856: *
                    857:       IF( ILBSCL ) THEN
                    858:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    859:       END IF
                    860: *
                    861:   130 CONTINUE
                    862:       WORK( 1 ) = MAXWRK
                    863: *
                    864:       RETURN
                    865: *
                    866: *     End of DGGEVX
                    867: *
                    868:       END

CVSweb interface <joel.bertrand@systella.fr>