Annotation of rpl/lapack/lapack/dggevx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
        !             2:      $                   ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
        !             3:      $                   IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
        !             4:      $                   RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
        !             5: *
        !             6: *  -- LAPACK driver routine (version 3.2) --
        !             7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             9: *     November 2006
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
        !            13:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
        !            14:       DOUBLE PRECISION   ABNRM, BBNRM
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       LOGICAL            BWORK( * )
        !            18:       INTEGER            IWORK( * )
        !            19:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !            20:      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
        !            21:      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
        !            22:      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
        !            23: *     ..
        !            24: *
        !            25: *  Purpose
        !            26: *  =======
        !            27: *
        !            28: *  DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
        !            29: *  the generalized eigenvalues, and optionally, the left and/or right
        !            30: *  generalized eigenvectors.
        !            31: *
        !            32: *  Optionally also, it computes a balancing transformation to improve
        !            33: *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
        !            34: *  LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
        !            35: *  the eigenvalues (RCONDE), and reciprocal condition numbers for the
        !            36: *  right eigenvectors (RCONDV).
        !            37: *
        !            38: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar
        !            39: *  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
        !            40: *  singular. It is usually represented as the pair (alpha,beta), as
        !            41: *  there is a reasonable interpretation for beta=0, and even for both
        !            42: *  being zero.
        !            43: *
        !            44: *  The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
        !            45: *  of (A,B) satisfies
        !            46: *
        !            47: *                   A * v(j) = lambda(j) * B * v(j) .
        !            48: *
        !            49: *  The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
        !            50: *  of (A,B) satisfies
        !            51: *
        !            52: *                   u(j)**H * A  = lambda(j) * u(j)**H * B.
        !            53: *
        !            54: *  where u(j)**H is the conjugate-transpose of u(j).
        !            55: *
        !            56: *
        !            57: *  Arguments
        !            58: *  =========
        !            59: *
        !            60: *  BALANC  (input) CHARACTER*1
        !            61: *          Specifies the balance option to be performed.
        !            62: *          = 'N':  do not diagonally scale or permute;
        !            63: *          = 'P':  permute only;
        !            64: *          = 'S':  scale only;
        !            65: *          = 'B':  both permute and scale.
        !            66: *          Computed reciprocal condition numbers will be for the
        !            67: *          matrices after permuting and/or balancing. Permuting does
        !            68: *          not change condition numbers (in exact arithmetic), but
        !            69: *          balancing does.
        !            70: *
        !            71: *  JOBVL   (input) CHARACTER*1
        !            72: *          = 'N':  do not compute the left generalized eigenvectors;
        !            73: *          = 'V':  compute the left generalized eigenvectors.
        !            74: *
        !            75: *  JOBVR   (input) CHARACTER*1
        !            76: *          = 'N':  do not compute the right generalized eigenvectors;
        !            77: *          = 'V':  compute the right generalized eigenvectors.
        !            78: *
        !            79: *  SENSE   (input) CHARACTER*1
        !            80: *          Determines which reciprocal condition numbers are computed.
        !            81: *          = 'N': none are computed;
        !            82: *          = 'E': computed for eigenvalues only;
        !            83: *          = 'V': computed for eigenvectors only;
        !            84: *          = 'B': computed for eigenvalues and eigenvectors.
        !            85: *
        !            86: *  N       (input) INTEGER
        !            87: *          The order of the matrices A, B, VL, and VR.  N >= 0.
        !            88: *
        !            89: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
        !            90: *          On entry, the matrix A in the pair (A,B).
        !            91: *          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
        !            92: *          or both, then A contains the first part of the real Schur
        !            93: *          form of the "balanced" versions of the input A and B.
        !            94: *
        !            95: *  LDA     (input) INTEGER
        !            96: *          The leading dimension of A.  LDA >= max(1,N).
        !            97: *
        !            98: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
        !            99: *          On entry, the matrix B in the pair (A,B).
        !           100: *          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
        !           101: *          or both, then B contains the second part of the real Schur
        !           102: *          form of the "balanced" versions of the input A and B.
        !           103: *
        !           104: *  LDB     (input) INTEGER
        !           105: *          The leading dimension of B.  LDB >= max(1,N).
        !           106: *
        !           107: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
        !           108: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
        !           109: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
        !           110: *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
        !           111: *          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
        !           112: *          the j-th eigenvalue is real; if positive, then the j-th and
        !           113: *          (j+1)-st eigenvalues are a complex conjugate pair, with
        !           114: *          ALPHAI(j+1) negative.
        !           115: *
        !           116: *          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
        !           117: *          may easily over- or underflow, and BETA(j) may even be zero.
        !           118: *          Thus, the user should avoid naively computing the ratio
        !           119: *          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
        !           120: *          than and usually comparable with norm(A) in magnitude, and
        !           121: *          BETA always less than and usually comparable with norm(B).
        !           122: *
        !           123: *  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
        !           124: *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
        !           125: *          after another in the columns of VL, in the same order as
        !           126: *          their eigenvalues. If the j-th eigenvalue is real, then
        !           127: *          u(j) = VL(:,j), the j-th column of VL. If the j-th and
        !           128: *          (j+1)-th eigenvalues form a complex conjugate pair, then
        !           129: *          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
        !           130: *          Each eigenvector will be scaled so the largest component have
        !           131: *          abs(real part) + abs(imag. part) = 1.
        !           132: *          Not referenced if JOBVL = 'N'.
        !           133: *
        !           134: *  LDVL    (input) INTEGER
        !           135: *          The leading dimension of the matrix VL. LDVL >= 1, and
        !           136: *          if JOBVL = 'V', LDVL >= N.
        !           137: *
        !           138: *  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
        !           139: *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
        !           140: *          after another in the columns of VR, in the same order as
        !           141: *          their eigenvalues. If the j-th eigenvalue is real, then
        !           142: *          v(j) = VR(:,j), the j-th column of VR. If the j-th and
        !           143: *          (j+1)-th eigenvalues form a complex conjugate pair, then
        !           144: *          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
        !           145: *          Each eigenvector will be scaled so the largest component have
        !           146: *          abs(real part) + abs(imag. part) = 1.
        !           147: *          Not referenced if JOBVR = 'N'.
        !           148: *
        !           149: *  LDVR    (input) INTEGER
        !           150: *          The leading dimension of the matrix VR. LDVR >= 1, and
        !           151: *          if JOBVR = 'V', LDVR >= N.
        !           152: *
        !           153: *  ILO     (output) INTEGER
        !           154: *  IHI     (output) INTEGER
        !           155: *          ILO and IHI are integer values such that on exit
        !           156: *          A(i,j) = 0 and B(i,j) = 0 if i > j and
        !           157: *          j = 1,...,ILO-1 or i = IHI+1,...,N.
        !           158: *          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
        !           159: *
        !           160: *  LSCALE  (output) DOUBLE PRECISION array, dimension (N)
        !           161: *          Details of the permutations and scaling factors applied
        !           162: *          to the left side of A and B.  If PL(j) is the index of the
        !           163: *          row interchanged with row j, and DL(j) is the scaling
        !           164: *          factor applied to row j, then
        !           165: *            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
        !           166: *                      = DL(j)  for j = ILO,...,IHI
        !           167: *                      = PL(j)  for j = IHI+1,...,N.
        !           168: *          The order in which the interchanges are made is N to IHI+1,
        !           169: *          then 1 to ILO-1.
        !           170: *
        !           171: *  RSCALE  (output) DOUBLE PRECISION array, dimension (N)
        !           172: *          Details of the permutations and scaling factors applied
        !           173: *          to the right side of A and B.  If PR(j) is the index of the
        !           174: *          column interchanged with column j, and DR(j) is the scaling
        !           175: *          factor applied to column j, then
        !           176: *            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
        !           177: *                      = DR(j)  for j = ILO,...,IHI
        !           178: *                      = PR(j)  for j = IHI+1,...,N
        !           179: *          The order in which the interchanges are made is N to IHI+1,
        !           180: *          then 1 to ILO-1.
        !           181: *
        !           182: *  ABNRM   (output) DOUBLE PRECISION
        !           183: *          The one-norm of the balanced matrix A.
        !           184: *
        !           185: *  BBNRM   (output) DOUBLE PRECISION
        !           186: *          The one-norm of the balanced matrix B.
        !           187: *
        !           188: *  RCONDE  (output) DOUBLE PRECISION array, dimension (N)
        !           189: *          If SENSE = 'E' or 'B', the reciprocal condition numbers of
        !           190: *          the eigenvalues, stored in consecutive elements of the array.
        !           191: *          For a complex conjugate pair of eigenvalues two consecutive
        !           192: *          elements of RCONDE are set to the same value. Thus RCONDE(j),
        !           193: *          RCONDV(j), and the j-th columns of VL and VR all correspond
        !           194: *          to the j-th eigenpair.
        !           195: *          If SENSE = 'N or 'V', RCONDE is not referenced.
        !           196: *
        !           197: *  RCONDV  (output) DOUBLE PRECISION array, dimension (N)
        !           198: *          If SENSE = 'V' or 'B', the estimated reciprocal condition
        !           199: *          numbers of the eigenvectors, stored in consecutive elements
        !           200: *          of the array. For a complex eigenvector two consecutive
        !           201: *          elements of RCONDV are set to the same value. If the
        !           202: *          eigenvalues cannot be reordered to compute RCONDV(j),
        !           203: *          RCONDV(j) is set to 0; this can only occur when the true
        !           204: *          value would be very small anyway.
        !           205: *          If SENSE = 'N' or 'E', RCONDV is not referenced.
        !           206: *
        !           207: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           208: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           209: *
        !           210: *  LWORK   (input) INTEGER
        !           211: *          The dimension of the array WORK. LWORK >= max(1,2*N).
        !           212: *          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
        !           213: *          LWORK >= max(1,6*N).
        !           214: *          If SENSE = 'E' or 'B', LWORK >= max(1,10*N).
        !           215: *          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
        !           216: *
        !           217: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           218: *          only calculates the optimal size of the WORK array, returns
        !           219: *          this value as the first entry of the WORK array, and no error
        !           220: *          message related to LWORK is issued by XERBLA.
        !           221: *
        !           222: *  IWORK   (workspace) INTEGER array, dimension (N+6)
        !           223: *          If SENSE = 'E', IWORK is not referenced.
        !           224: *
        !           225: *  BWORK   (workspace) LOGICAL array, dimension (N)
        !           226: *          If SENSE = 'N', BWORK is not referenced.
        !           227: *
        !           228: *  INFO    (output) INTEGER
        !           229: *          = 0:  successful exit
        !           230: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           231: *          = 1,...,N:
        !           232: *                The QZ iteration failed.  No eigenvectors have been
        !           233: *                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
        !           234: *                should be correct for j=INFO+1,...,N.
        !           235: *          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
        !           236: *                =N+2: error return from DTGEVC.
        !           237: *
        !           238: *  Further Details
        !           239: *  ===============
        !           240: *
        !           241: *  Balancing a matrix pair (A,B) includes, first, permuting rows and
        !           242: *  columns to isolate eigenvalues, second, applying diagonal similarity
        !           243: *  transformation to the rows and columns to make the rows and columns
        !           244: *  as close in norm as possible. The computed reciprocal condition
        !           245: *  numbers correspond to the balanced matrix. Permuting rows and columns
        !           246: *  will not change the condition numbers (in exact arithmetic) but
        !           247: *  diagonal scaling will.  For further explanation of balancing, see
        !           248: *  section 4.11.1.2 of LAPACK Users' Guide.
        !           249: *
        !           250: *  An approximate error bound on the chordal distance between the i-th
        !           251: *  computed generalized eigenvalue w and the corresponding exact
        !           252: *  eigenvalue lambda is
        !           253: *
        !           254: *       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
        !           255: *
        !           256: *  An approximate error bound for the angle between the i-th computed
        !           257: *  eigenvector VL(i) or VR(i) is given by
        !           258: *
        !           259: *       EPS * norm(ABNRM, BBNRM) / DIF(i).
        !           260: *
        !           261: *  For further explanation of the reciprocal condition numbers RCONDE
        !           262: *  and RCONDV, see section 4.11 of LAPACK User's Guide.
        !           263: *
        !           264: *  =====================================================================
        !           265: *
        !           266: *     .. Parameters ..
        !           267:       DOUBLE PRECISION   ZERO, ONE
        !           268:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           269: *     ..
        !           270: *     .. Local Scalars ..
        !           271:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
        !           272:      $                   PAIR, WANTSB, WANTSE, WANTSN, WANTSV
        !           273:       CHARACTER          CHTEMP
        !           274:       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
        !           275:      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK,
        !           276:      $                   MINWRK, MM
        !           277:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
        !           278:      $                   SMLNUM, TEMP
        !           279: *     ..
        !           280: *     .. Local Arrays ..
        !           281:       LOGICAL            LDUMMA( 1 )
        !           282: *     ..
        !           283: *     .. External Subroutines ..
        !           284:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
        !           285:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGEVC,
        !           286:      $                   DTGSNA, XERBLA 
        !           287: *     ..
        !           288: *     .. External Functions ..
        !           289:       LOGICAL            LSAME
        !           290:       INTEGER            ILAENV
        !           291:       DOUBLE PRECISION   DLAMCH, DLANGE
        !           292:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
        !           293: *     ..
        !           294: *     .. Intrinsic Functions ..
        !           295:       INTRINSIC          ABS, MAX, SQRT
        !           296: *     ..
        !           297: *     .. Executable Statements ..
        !           298: *
        !           299: *     Decode the input arguments
        !           300: *
        !           301:       IF( LSAME( JOBVL, 'N' ) ) THEN
        !           302:          IJOBVL = 1
        !           303:          ILVL = .FALSE.
        !           304:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
        !           305:          IJOBVL = 2
        !           306:          ILVL = .TRUE.
        !           307:       ELSE
        !           308:          IJOBVL = -1
        !           309:          ILVL = .FALSE.
        !           310:       END IF
        !           311: *
        !           312:       IF( LSAME( JOBVR, 'N' ) ) THEN
        !           313:          IJOBVR = 1
        !           314:          ILVR = .FALSE.
        !           315:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
        !           316:          IJOBVR = 2
        !           317:          ILVR = .TRUE.
        !           318:       ELSE
        !           319:          IJOBVR = -1
        !           320:          ILVR = .FALSE.
        !           321:       END IF
        !           322:       ILV = ILVL .OR. ILVR
        !           323: *
        !           324:       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
        !           325:       WANTSN = LSAME( SENSE, 'N' )
        !           326:       WANTSE = LSAME( SENSE, 'E' )
        !           327:       WANTSV = LSAME( SENSE, 'V' )
        !           328:       WANTSB = LSAME( SENSE, 'B' )
        !           329: *
        !           330: *     Test the input arguments
        !           331: *
        !           332:       INFO = 0
        !           333:       LQUERY = ( LWORK.EQ.-1 )
        !           334:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
        !           335:      $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
        !           336:      $     THEN
        !           337:          INFO = -1
        !           338:       ELSE IF( IJOBVL.LE.0 ) THEN
        !           339:          INFO = -2
        !           340:       ELSE IF( IJOBVR.LE.0 ) THEN
        !           341:          INFO = -3
        !           342:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
        !           343:      $          THEN
        !           344:          INFO = -4
        !           345:       ELSE IF( N.LT.0 ) THEN
        !           346:          INFO = -5
        !           347:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           348:          INFO = -7
        !           349:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           350:          INFO = -9
        !           351:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
        !           352:          INFO = -14
        !           353:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
        !           354:          INFO = -16
        !           355:       END IF
        !           356: *
        !           357: *     Compute workspace
        !           358: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           359: *       minimal amount of workspace needed at that point in the code,
        !           360: *       as well as the preferred amount for good performance.
        !           361: *       NB refers to the optimal block size for the immediately
        !           362: *       following subroutine, as returned by ILAENV. The workspace is
        !           363: *       computed assuming ILO = 1 and IHI = N, the worst case.)
        !           364: *
        !           365:       IF( INFO.EQ.0 ) THEN
        !           366:          IF( N.EQ.0 ) THEN
        !           367:             MINWRK = 1
        !           368:             MAXWRK = 1
        !           369:          ELSE
        !           370:             IF( NOSCL .AND. .NOT.ILV ) THEN
        !           371:                MINWRK = 2*N
        !           372:             ELSE
        !           373:                MINWRK = 6*N
        !           374:             END IF
        !           375:             IF( WANTSE .OR. WANTSB ) THEN
        !           376:                MINWRK = 10*N
        !           377:             END IF
        !           378:             IF( WANTSV .OR. WANTSB ) THEN
        !           379:                MINWRK = MAX( MINWRK, 2*N*( N + 4 ) + 16 )
        !           380:             END IF
        !           381:             MAXWRK = MINWRK
        !           382:             MAXWRK = MAX( MAXWRK,
        !           383:      $                    N + N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) )
        !           384:             MAXWRK = MAX( MAXWRK,
        !           385:      $                    N + N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) )
        !           386:             IF( ILVL ) THEN
        !           387:                MAXWRK = MAX( MAXWRK, N +
        !           388:      $                       N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, 0 ) )
        !           389:             END IF
        !           390:          END IF
        !           391:          WORK( 1 ) = MAXWRK
        !           392: *
        !           393:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           394:             INFO = -26
        !           395:          END IF
        !           396:       END IF
        !           397: *
        !           398:       IF( INFO.NE.0 ) THEN
        !           399:          CALL XERBLA( 'DGGEVX', -INFO )
        !           400:          RETURN
        !           401:       ELSE IF( LQUERY ) THEN
        !           402:          RETURN
        !           403:       END IF
        !           404: *
        !           405: *     Quick return if possible
        !           406: *
        !           407:       IF( N.EQ.0 )
        !           408:      $   RETURN
        !           409: *
        !           410: *
        !           411: *     Get machine constants
        !           412: *
        !           413:       EPS = DLAMCH( 'P' )
        !           414:       SMLNUM = DLAMCH( 'S' )
        !           415:       BIGNUM = ONE / SMLNUM
        !           416:       CALL DLABAD( SMLNUM, BIGNUM )
        !           417:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           418:       BIGNUM = ONE / SMLNUM
        !           419: *
        !           420: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           421: *
        !           422:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
        !           423:       ILASCL = .FALSE.
        !           424:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           425:          ANRMTO = SMLNUM
        !           426:          ILASCL = .TRUE.
        !           427:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           428:          ANRMTO = BIGNUM
        !           429:          ILASCL = .TRUE.
        !           430:       END IF
        !           431:       IF( ILASCL )
        !           432:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
        !           433: *
        !           434: *     Scale B if max element outside range [SMLNUM,BIGNUM]
        !           435: *
        !           436:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
        !           437:       ILBSCL = .FALSE.
        !           438:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           439:          BNRMTO = SMLNUM
        !           440:          ILBSCL = .TRUE.
        !           441:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           442:          BNRMTO = BIGNUM
        !           443:          ILBSCL = .TRUE.
        !           444:       END IF
        !           445:       IF( ILBSCL )
        !           446:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
        !           447: *
        !           448: *     Permute and/or balance the matrix pair (A,B)
        !           449: *     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
        !           450: *
        !           451:       CALL DGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
        !           452:      $             WORK, IERR )
        !           453: *
        !           454: *     Compute ABNRM and BBNRM
        !           455: *
        !           456:       ABNRM = DLANGE( '1', N, N, A, LDA, WORK( 1 ) )
        !           457:       IF( ILASCL ) THEN
        !           458:          WORK( 1 ) = ABNRM
        !           459:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, WORK( 1 ), 1,
        !           460:      $                IERR )
        !           461:          ABNRM = WORK( 1 )
        !           462:       END IF
        !           463: *
        !           464:       BBNRM = DLANGE( '1', N, N, B, LDB, WORK( 1 ) )
        !           465:       IF( ILBSCL ) THEN
        !           466:          WORK( 1 ) = BBNRM
        !           467:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, WORK( 1 ), 1,
        !           468:      $                IERR )
        !           469:          BBNRM = WORK( 1 )
        !           470:       END IF
        !           471: *
        !           472: *     Reduce B to triangular form (QR decomposition of B)
        !           473: *     (Workspace: need N, prefer N*NB )
        !           474: *
        !           475:       IROWS = IHI + 1 - ILO
        !           476:       IF( ILV .OR. .NOT.WANTSN ) THEN
        !           477:          ICOLS = N + 1 - ILO
        !           478:       ELSE
        !           479:          ICOLS = IROWS
        !           480:       END IF
        !           481:       ITAU = 1
        !           482:       IWRK = ITAU + IROWS
        !           483:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
        !           484:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           485: *
        !           486: *     Apply the orthogonal transformation to A
        !           487: *     (Workspace: need N, prefer N*NB)
        !           488: *
        !           489:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
        !           490:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
        !           491:      $             LWORK+1-IWRK, IERR )
        !           492: *
        !           493: *     Initialize VL and/or VR
        !           494: *     (Workspace: need N, prefer N*NB)
        !           495: *
        !           496:       IF( ILVL ) THEN
        !           497:          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
        !           498:          IF( IROWS.GT.1 ) THEN
        !           499:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
        !           500:      $                   VL( ILO+1, ILO ), LDVL )
        !           501:          END IF
        !           502:          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
        !           503:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           504:       END IF
        !           505: *
        !           506:       IF( ILVR )
        !           507:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
        !           508: *
        !           509: *     Reduce to generalized Hessenberg form
        !           510: *     (Workspace: none needed)
        !           511: *
        !           512:       IF( ILV .OR. .NOT.WANTSN ) THEN
        !           513: *
        !           514: *        Eigenvectors requested -- work on whole matrix.
        !           515: *
        !           516:          CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
        !           517:      $                LDVL, VR, LDVR, IERR )
        !           518:       ELSE
        !           519:          CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
        !           520:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
        !           521:       END IF
        !           522: *
        !           523: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
        !           524: *     Schur forms and Schur vectors)
        !           525: *     (Workspace: need N)
        !           526: *
        !           527:       IF( ILV .OR. .NOT.WANTSN ) THEN
        !           528:          CHTEMP = 'S'
        !           529:       ELSE
        !           530:          CHTEMP = 'E'
        !           531:       END IF
        !           532: *
        !           533:       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
        !           534:      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK,
        !           535:      $             LWORK, IERR )
        !           536:       IF( IERR.NE.0 ) THEN
        !           537:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
        !           538:             INFO = IERR
        !           539:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
        !           540:             INFO = IERR - N
        !           541:          ELSE
        !           542:             INFO = N + 1
        !           543:          END IF
        !           544:          GO TO 130
        !           545:       END IF
        !           546: *
        !           547: *     Compute Eigenvectors and estimate condition numbers if desired
        !           548: *     (Workspace: DTGEVC: need 6*N
        !           549: *                 DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B',
        !           550: *                         need N otherwise )
        !           551: *
        !           552:       IF( ILV .OR. .NOT.WANTSN ) THEN
        !           553:          IF( ILV ) THEN
        !           554:             IF( ILVL ) THEN
        !           555:                IF( ILVR ) THEN
        !           556:                   CHTEMP = 'B'
        !           557:                ELSE
        !           558:                   CHTEMP = 'L'
        !           559:                END IF
        !           560:             ELSE
        !           561:                CHTEMP = 'R'
        !           562:             END IF
        !           563: *
        !           564:             CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
        !           565:      $                   LDVL, VR, LDVR, N, IN, WORK, IERR )
        !           566:             IF( IERR.NE.0 ) THEN
        !           567:                INFO = N + 2
        !           568:                GO TO 130
        !           569:             END IF
        !           570:          END IF
        !           571: *
        !           572:          IF( .NOT.WANTSN ) THEN
        !           573: *
        !           574: *           compute eigenvectors (DTGEVC) and estimate condition
        !           575: *           numbers (DTGSNA). Note that the definition of the condition
        !           576: *           number is not invariant under transformation (u,v) to
        !           577: *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
        !           578: *           Schur form (S,T), Q and Z are orthogonal matrices. In order
        !           579: *           to avoid using extra 2*N*N workspace, we have to recalculate
        !           580: *           eigenvectors and estimate one condition numbers at a time.
        !           581: *
        !           582:             PAIR = .FALSE.
        !           583:             DO 20 I = 1, N
        !           584: *
        !           585:                IF( PAIR ) THEN
        !           586:                   PAIR = .FALSE.
        !           587:                   GO TO 20
        !           588:                END IF
        !           589:                MM = 1
        !           590:                IF( I.LT.N ) THEN
        !           591:                   IF( A( I+1, I ).NE.ZERO ) THEN
        !           592:                      PAIR = .TRUE.
        !           593:                      MM = 2
        !           594:                   END IF
        !           595:                END IF
        !           596: *
        !           597:                DO 10 J = 1, N
        !           598:                   BWORK( J ) = .FALSE.
        !           599:    10          CONTINUE
        !           600:                IF( MM.EQ.1 ) THEN
        !           601:                   BWORK( I ) = .TRUE.
        !           602:                ELSE IF( MM.EQ.2 ) THEN
        !           603:                   BWORK( I ) = .TRUE.
        !           604:                   BWORK( I+1 ) = .TRUE.
        !           605:                END IF
        !           606: *
        !           607:                IWRK = MM*N + 1
        !           608:                IWRK1 = IWRK + MM*N
        !           609: *
        !           610: *              Compute a pair of left and right eigenvectors.
        !           611: *              (compute workspace: need up to 4*N + 6*N)
        !           612: *
        !           613:                IF( WANTSE .OR. WANTSB ) THEN
        !           614:                   CALL DTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
        !           615:      $                         WORK( 1 ), N, WORK( IWRK ), N, MM, M,
        !           616:      $                         WORK( IWRK1 ), IERR )
        !           617:                   IF( IERR.NE.0 ) THEN
        !           618:                      INFO = N + 2
        !           619:                      GO TO 130
        !           620:                   END IF
        !           621:                END IF
        !           622: *
        !           623:                CALL DTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
        !           624:      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
        !           625:      $                      RCONDV( I ), MM, M, WORK( IWRK1 ),
        !           626:      $                      LWORK-IWRK1+1, IWORK, IERR )
        !           627: *
        !           628:    20       CONTINUE
        !           629:          END IF
        !           630:       END IF
        !           631: *
        !           632: *     Undo balancing on VL and VR and normalization
        !           633: *     (Workspace: none needed)
        !           634: *
        !           635:       IF( ILVL ) THEN
        !           636:          CALL DGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
        !           637:      $                LDVL, IERR )
        !           638: *
        !           639:          DO 70 JC = 1, N
        !           640:             IF( ALPHAI( JC ).LT.ZERO )
        !           641:      $         GO TO 70
        !           642:             TEMP = ZERO
        !           643:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
        !           644:                DO 30 JR = 1, N
        !           645:                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
        !           646:    30          CONTINUE
        !           647:             ELSE
        !           648:                DO 40 JR = 1, N
        !           649:                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
        !           650:      $                   ABS( VL( JR, JC+1 ) ) )
        !           651:    40          CONTINUE
        !           652:             END IF
        !           653:             IF( TEMP.LT.SMLNUM )
        !           654:      $         GO TO 70
        !           655:             TEMP = ONE / TEMP
        !           656:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
        !           657:                DO 50 JR = 1, N
        !           658:                   VL( JR, JC ) = VL( JR, JC )*TEMP
        !           659:    50          CONTINUE
        !           660:             ELSE
        !           661:                DO 60 JR = 1, N
        !           662:                   VL( JR, JC ) = VL( JR, JC )*TEMP
        !           663:                   VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
        !           664:    60          CONTINUE
        !           665:             END IF
        !           666:    70    CONTINUE
        !           667:       END IF
        !           668:       IF( ILVR ) THEN
        !           669:          CALL DGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
        !           670:      $                LDVR, IERR )
        !           671:          DO 120 JC = 1, N
        !           672:             IF( ALPHAI( JC ).LT.ZERO )
        !           673:      $         GO TO 120
        !           674:             TEMP = ZERO
        !           675:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
        !           676:                DO 80 JR = 1, N
        !           677:                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
        !           678:    80          CONTINUE
        !           679:             ELSE
        !           680:                DO 90 JR = 1, N
        !           681:                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
        !           682:      $                   ABS( VR( JR, JC+1 ) ) )
        !           683:    90          CONTINUE
        !           684:             END IF
        !           685:             IF( TEMP.LT.SMLNUM )
        !           686:      $         GO TO 120
        !           687:             TEMP = ONE / TEMP
        !           688:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
        !           689:                DO 100 JR = 1, N
        !           690:                   VR( JR, JC ) = VR( JR, JC )*TEMP
        !           691:   100          CONTINUE
        !           692:             ELSE
        !           693:                DO 110 JR = 1, N
        !           694:                   VR( JR, JC ) = VR( JR, JC )*TEMP
        !           695:                   VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
        !           696:   110          CONTINUE
        !           697:             END IF
        !           698:   120    CONTINUE
        !           699:       END IF
        !           700: *
        !           701: *     Undo scaling if necessary
        !           702: *
        !           703:       IF( ILASCL ) THEN
        !           704:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
        !           705:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
        !           706:       END IF
        !           707: *
        !           708:       IF( ILBSCL ) THEN
        !           709:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           710:       END IF
        !           711: *
        !           712:   130 CONTINUE
        !           713:       WORK( 1 ) = MAXWRK
        !           714: *
        !           715:       RETURN
        !           716: *
        !           717: *     End of DGGEVX
        !           718: *
        !           719:       END

CVSweb interface <joel.bertrand@systella.fr>