File:  [local] / rpl / lapack / lapack / dggev3.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:17:53 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief <b> DGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGGEV3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggev3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggev3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggev3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR,
   22: *      $                   ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK,
   23: *      $                   INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBVL, JOBVR
   27: *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   31: *      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
   32: *      $                   VR( LDVR, * ), WORK( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> DGGEV3 computes for a pair of N-by-N real nonsymmetric matrices (A,B)
   42: *> the generalized eigenvalues, and optionally, the left and/or right
   43: *> generalized eigenvectors.
   44: *>
   45: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
   46: *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
   47: *> singular. It is usually represented as the pair (alpha,beta), as
   48: *> there is a reasonable interpretation for beta=0, and even for both
   49: *> being zero.
   50: *>
   51: *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
   52: *> of (A,B) satisfies
   53: *>
   54: *>                  A * v(j) = lambda(j) * B * v(j).
   55: *>
   56: *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
   57: *> of (A,B) satisfies
   58: *>
   59: *>                  u(j)**H * A  = lambda(j) * u(j)**H * B .
   60: *>
   61: *> where u(j)**H is the conjugate-transpose of u(j).
   62: *>
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] JOBVL
   69: *> \verbatim
   70: *>          JOBVL is CHARACTER*1
   71: *>          = 'N':  do not compute the left generalized eigenvectors;
   72: *>          = 'V':  compute the left generalized eigenvectors.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] JOBVR
   76: *> \verbatim
   77: *>          JOBVR is CHARACTER*1
   78: *>          = 'N':  do not compute the right generalized eigenvectors;
   79: *>          = 'V':  compute the right generalized eigenvectors.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] N
   83: *> \verbatim
   84: *>          N is INTEGER
   85: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] A
   89: *> \verbatim
   90: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
   91: *>          On entry, the matrix A in the pair (A,B).
   92: *>          On exit, A has been overwritten.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] LDA
   96: *> \verbatim
   97: *>          LDA is INTEGER
   98: *>          The leading dimension of A.  LDA >= max(1,N).
   99: *> \endverbatim
  100: *>
  101: *> \param[in,out] B
  102: *> \verbatim
  103: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
  104: *>          On entry, the matrix B in the pair (A,B).
  105: *>          On exit, B has been overwritten.
  106: *> \endverbatim
  107: *>
  108: *> \param[in] LDB
  109: *> \verbatim
  110: *>          LDB is INTEGER
  111: *>          The leading dimension of B.  LDB >= max(1,N).
  112: *> \endverbatim
  113: *>
  114: *> \param[out] ALPHAR
  115: *> \verbatim
  116: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
  117: *> \endverbatim
  118: *>
  119: *> \param[out] ALPHAI
  120: *> \verbatim
  121: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
  122: *> \endverbatim
  123: *>
  124: *> \param[out] BETA
  125: *> \verbatim
  126: *>          BETA is DOUBLE PRECISION array, dimension (N)
  127: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  128: *>          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
  129: *>          the j-th eigenvalue is real; if positive, then the j-th and
  130: *>          (j+1)-st eigenvalues are a complex conjugate pair, with
  131: *>          ALPHAI(j+1) negative.
  132: *>
  133: *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
  134: *>          may easily over- or underflow, and BETA(j) may even be zero.
  135: *>          Thus, the user should avoid naively computing the ratio
  136: *>          alpha/beta.  However, ALPHAR and ALPHAI will be always less
  137: *>          than and usually comparable with norm(A) in magnitude, and
  138: *>          BETA always less than and usually comparable with norm(B).
  139: *> \endverbatim
  140: *>
  141: *> \param[out] VL
  142: *> \verbatim
  143: *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
  144: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
  145: *>          after another in the columns of VL, in the same order as
  146: *>          their eigenvalues. If the j-th eigenvalue is real, then
  147: *>          u(j) = VL(:,j), the j-th column of VL. If the j-th and
  148: *>          (j+1)-th eigenvalues form a complex conjugate pair, then
  149: *>          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
  150: *>          Each eigenvector is scaled so the largest component has
  151: *>          abs(real part)+abs(imag. part)=1.
  152: *>          Not referenced if JOBVL = 'N'.
  153: *> \endverbatim
  154: *>
  155: *> \param[in] LDVL
  156: *> \verbatim
  157: *>          LDVL is INTEGER
  158: *>          The leading dimension of the matrix VL. LDVL >= 1, and
  159: *>          if JOBVL = 'V', LDVL >= N.
  160: *> \endverbatim
  161: *>
  162: *> \param[out] VR
  163: *> \verbatim
  164: *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
  165: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
  166: *>          after another in the columns of VR, in the same order as
  167: *>          their eigenvalues. If the j-th eigenvalue is real, then
  168: *>          v(j) = VR(:,j), the j-th column of VR. If the j-th and
  169: *>          (j+1)-th eigenvalues form a complex conjugate pair, then
  170: *>          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
  171: *>          Each eigenvector is scaled so the largest component has
  172: *>          abs(real part)+abs(imag. part)=1.
  173: *>          Not referenced if JOBVR = 'N'.
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDVR
  177: *> \verbatim
  178: *>          LDVR is INTEGER
  179: *>          The leading dimension of the matrix VR. LDVR >= 1, and
  180: *>          if JOBVR = 'V', LDVR >= N.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] WORK
  184: *> \verbatim
  185: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  186: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  187: *> \endverbatim
  188: *>
  189: *> \param[in] LWORK
  190: *> \verbatim
  191: *>          LWORK is INTEGER
  192: *>
  193: *>          If LWORK = -1, then a workspace query is assumed; the routine
  194: *>          only calculates the optimal size of the WORK array, returns
  195: *>          this value as the first entry of the WORK array, and no error
  196: *>          message related to LWORK is issued by XERBLA.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] INFO
  200: *> \verbatim
  201: *>          INFO is INTEGER
  202: *>          = 0:  successful exit
  203: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  204: *>          = 1,...,N:
  205: *>                The QZ iteration failed.  No eigenvectors have been
  206: *>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
  207: *>                should be correct for j=INFO+1,...,N.
  208: *>          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
  209: *>                =N+2: error return from DTGEVC.
  210: *> \endverbatim
  211: *
  212: *  Authors:
  213: *  ========
  214: *
  215: *> \author Univ. of Tennessee
  216: *> \author Univ. of California Berkeley
  217: *> \author Univ. of Colorado Denver
  218: *> \author NAG Ltd.
  219: *
  220: *> \date January 2015
  221: *
  222: *> \ingroup doubleGEeigen
  223: *
  224: *  =====================================================================
  225:       SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR,
  226:      $                   ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK,
  227:      $                   INFO )
  228: *
  229: *  -- LAPACK driver routine (version 3.6.0) --
  230: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  231: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  232: *     January 2015
  233: *
  234: *     .. Scalar Arguments ..
  235:       CHARACTER          JOBVL, JOBVR
  236:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  237: *     ..
  238: *     .. Array Arguments ..
  239:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  240:      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
  241:      $                   VR( LDVR, * ), WORK( * )
  242: *     ..
  243: *
  244: *  =====================================================================
  245: *
  246: *     .. Parameters ..
  247:       DOUBLE PRECISION   ZERO, ONE
  248:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  249: *     ..
  250: *     .. Local Scalars ..
  251:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
  252:       CHARACTER          CHTEMP
  253:       INTEGER            ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
  254:      $                   IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, LWKOPT
  255:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  256:      $                   SMLNUM, TEMP
  257: *     ..
  258: *     .. Local Arrays ..
  259:       LOGICAL            LDUMMA( 1 )
  260: *     ..
  261: *     .. External Subroutines ..
  262:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHD3, DHGEQZ, DLABAD,
  263:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGEVC,
  264:      $                   XERBLA
  265: *     ..
  266: *     .. External Functions ..
  267:       LOGICAL            LSAME
  268:       DOUBLE PRECISION   DLAMCH, DLANGE
  269:       EXTERNAL           LSAME, DLAMCH, DLANGE
  270: *     ..
  271: *     .. Intrinsic Functions ..
  272:       INTRINSIC          ABS, MAX, SQRT
  273: *     ..
  274: *     .. Executable Statements ..
  275: *
  276: *     Decode the input arguments
  277: *
  278:       IF( LSAME( JOBVL, 'N' ) ) THEN
  279:          IJOBVL = 1
  280:          ILVL = .FALSE.
  281:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  282:          IJOBVL = 2
  283:          ILVL = .TRUE.
  284:       ELSE
  285:          IJOBVL = -1
  286:          ILVL = .FALSE.
  287:       END IF
  288: *
  289:       IF( LSAME( JOBVR, 'N' ) ) THEN
  290:          IJOBVR = 1
  291:          ILVR = .FALSE.
  292:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  293:          IJOBVR = 2
  294:          ILVR = .TRUE.
  295:       ELSE
  296:          IJOBVR = -1
  297:          ILVR = .FALSE.
  298:       END IF
  299:       ILV = ILVL .OR. ILVR
  300: *
  301: *     Test the input arguments
  302: *
  303:       INFO = 0
  304:       LQUERY = ( LWORK.EQ.-1 )
  305:       IF( IJOBVL.LE.0 ) THEN
  306:          INFO = -1
  307:       ELSE IF( IJOBVR.LE.0 ) THEN
  308:          INFO = -2
  309:       ELSE IF( N.LT.0 ) THEN
  310:          INFO = -3
  311:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  312:          INFO = -5
  313:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  314:          INFO = -7
  315:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  316:          INFO = -12
  317:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  318:          INFO = -14
  319:       ELSE IF( LWORK.LT.MAX( 1, 8*N ) .AND. .NOT.LQUERY ) THEN
  320:          INFO = -16
  321:       END IF
  322: *
  323: *     Compute workspace
  324: *
  325:       IF( INFO.EQ.0 ) THEN
  326:          CALL DGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
  327:          LWKOPT = MAX(1, 8*N, 3*N+INT( WORK( 1 ) ) )
  328:          CALL DORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK, -1,
  329:      $                IERR )
  330:          LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
  331:          IF( ILVL ) THEN
  332:             CALL DORGQR( N, N, N, VL, LDVL, WORK, WORK, -1, IERR )
  333:             LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
  334:          END IF
  335:          IF( ILV ) THEN
  336:             CALL DGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL,
  337:      $                   LDVL, VR, LDVR, WORK, -1, IERR )
  338:             LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
  339:             CALL DHGEQZ( 'S', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
  340:      $                   ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
  341:      $                   WORK, -1, IERR )
  342:             LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) )
  343:          ELSE
  344:             CALL DGGHD3( 'N', 'N', N, 1, N, A, LDA, B, LDB, VL, LDVL,
  345:      $                   VR, LDVR, WORK, -1, IERR )
  346:             LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
  347:             CALL DHGEQZ( 'E', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
  348:      $                   ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
  349:      $                   WORK, -1, IERR )
  350:             LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) )
  351:          END IF
  352: 
  353:          WORK( 1 ) = LWKOPT
  354:       END IF
  355: *
  356:       IF( INFO.NE.0 ) THEN
  357:          CALL XERBLA( 'DGGEV3 ', -INFO )
  358:          RETURN
  359:       ELSE IF( LQUERY ) THEN
  360:          RETURN
  361:       END IF
  362: *
  363: *     Quick return if possible
  364: *
  365:       IF( N.EQ.0 )
  366:      $   RETURN
  367: *
  368: *     Get machine constants
  369: *
  370:       EPS = DLAMCH( 'P' )
  371:       SMLNUM = DLAMCH( 'S' )
  372:       BIGNUM = ONE / SMLNUM
  373:       CALL DLABAD( SMLNUM, BIGNUM )
  374:       SMLNUM = SQRT( SMLNUM ) / EPS
  375:       BIGNUM = ONE / SMLNUM
  376: *
  377: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  378: *
  379:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
  380:       ILASCL = .FALSE.
  381:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  382:          ANRMTO = SMLNUM
  383:          ILASCL = .TRUE.
  384:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  385:          ANRMTO = BIGNUM
  386:          ILASCL = .TRUE.
  387:       END IF
  388:       IF( ILASCL )
  389:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  390: *
  391: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  392: *
  393:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
  394:       ILBSCL = .FALSE.
  395:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  396:          BNRMTO = SMLNUM
  397:          ILBSCL = .TRUE.
  398:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  399:          BNRMTO = BIGNUM
  400:          ILBSCL = .TRUE.
  401:       END IF
  402:       IF( ILBSCL )
  403:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  404: *
  405: *     Permute the matrices A, B to isolate eigenvalues if possible
  406: *
  407:       ILEFT = 1
  408:       IRIGHT = N + 1
  409:       IWRK = IRIGHT + N
  410:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
  411:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
  412: *
  413: *     Reduce B to triangular form (QR decomposition of B)
  414: *
  415:       IROWS = IHI + 1 - ILO
  416:       IF( ILV ) THEN
  417:          ICOLS = N + 1 - ILO
  418:       ELSE
  419:          ICOLS = IROWS
  420:       END IF
  421:       ITAU = IWRK
  422:       IWRK = ITAU + IROWS
  423:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  424:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  425: *
  426: *     Apply the orthogonal transformation to matrix A
  427: *
  428:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  429:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  430:      $             LWORK+1-IWRK, IERR )
  431: *
  432: *     Initialize VL
  433: *
  434:       IF( ILVL ) THEN
  435:          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
  436:          IF( IROWS.GT.1 ) THEN
  437:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  438:      $                   VL( ILO+1, ILO ), LDVL )
  439:          END IF
  440:          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  441:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  442:       END IF
  443: *
  444: *     Initialize VR
  445: *
  446:       IF( ILVR )
  447:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
  448: *
  449: *     Reduce to generalized Hessenberg form
  450: *
  451:       IF( ILV ) THEN
  452: *
  453: *        Eigenvectors requested -- work on whole matrix.
  454: *
  455:          CALL DGGHD3( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  456:      $                LDVL, VR, LDVR, WORK( IWRK ), LWORK+1-IWRK, IERR )
  457:       ELSE
  458:          CALL DGGHD3( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  459:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR,
  460:      $                WORK( IWRK ), LWORK+1-IWRK, IERR )
  461:       END IF
  462: *
  463: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
  464: *     Schur forms and Schur vectors)
  465: *
  466:       IWRK = ITAU
  467:       IF( ILV ) THEN
  468:          CHTEMP = 'S'
  469:       ELSE
  470:          CHTEMP = 'E'
  471:       END IF
  472:       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  473:      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
  474:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  475:       IF( IERR.NE.0 ) THEN
  476:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  477:             INFO = IERR
  478:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  479:             INFO = IERR - N
  480:          ELSE
  481:             INFO = N + 1
  482:          END IF
  483:          GO TO 110
  484:       END IF
  485: *
  486: *     Compute Eigenvectors
  487: *
  488:       IF( ILV ) THEN
  489:          IF( ILVL ) THEN
  490:             IF( ILVR ) THEN
  491:                CHTEMP = 'B'
  492:             ELSE
  493:                CHTEMP = 'L'
  494:             END IF
  495:          ELSE
  496:             CHTEMP = 'R'
  497:          END IF
  498:          CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
  499:      $                VR, LDVR, N, IN, WORK( IWRK ), IERR )
  500:          IF( IERR.NE.0 ) THEN
  501:             INFO = N + 2
  502:             GO TO 110
  503:          END IF
  504: *
  505: *        Undo balancing on VL and VR and normalization
  506: *
  507:          IF( ILVL ) THEN
  508:             CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
  509:      $                   WORK( IRIGHT ), N, VL, LDVL, IERR )
  510:             DO 50 JC = 1, N
  511:                IF( ALPHAI( JC ).LT.ZERO )
  512:      $            GO TO 50
  513:                TEMP = ZERO
  514:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
  515:                   DO 10 JR = 1, N
  516:                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
  517:    10             CONTINUE
  518:                ELSE
  519:                   DO 20 JR = 1, N
  520:                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
  521:      $                      ABS( VL( JR, JC+1 ) ) )
  522:    20             CONTINUE
  523:                END IF
  524:                IF( TEMP.LT.SMLNUM )
  525:      $            GO TO 50
  526:                TEMP = ONE / TEMP
  527:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
  528:                   DO 30 JR = 1, N
  529:                      VL( JR, JC ) = VL( JR, JC )*TEMP
  530:    30             CONTINUE
  531:                ELSE
  532:                   DO 40 JR = 1, N
  533:                      VL( JR, JC ) = VL( JR, JC )*TEMP
  534:                      VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
  535:    40             CONTINUE
  536:                END IF
  537:    50       CONTINUE
  538:          END IF
  539:          IF( ILVR ) THEN
  540:             CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
  541:      $                   WORK( IRIGHT ), N, VR, LDVR, IERR )
  542:             DO 100 JC = 1, N
  543:                IF( ALPHAI( JC ).LT.ZERO )
  544:      $            GO TO 100
  545:                TEMP = ZERO
  546:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
  547:                   DO 60 JR = 1, N
  548:                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
  549:    60             CONTINUE
  550:                ELSE
  551:                   DO 70 JR = 1, N
  552:                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
  553:      $                      ABS( VR( JR, JC+1 ) ) )
  554:    70             CONTINUE
  555:                END IF
  556:                IF( TEMP.LT.SMLNUM )
  557:      $            GO TO 100
  558:                TEMP = ONE / TEMP
  559:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
  560:                   DO 80 JR = 1, N
  561:                      VR( JR, JC ) = VR( JR, JC )*TEMP
  562:    80             CONTINUE
  563:                ELSE
  564:                   DO 90 JR = 1, N
  565:                      VR( JR, JC ) = VR( JR, JC )*TEMP
  566:                      VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
  567:    90             CONTINUE
  568:                END IF
  569:   100       CONTINUE
  570:          END IF
  571: *
  572: *        End of eigenvector calculation
  573: *
  574:       END IF
  575: *
  576: *     Undo scaling if necessary
  577: *
  578:   110 CONTINUE
  579: *
  580:       IF( ILASCL ) THEN
  581:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
  582:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
  583:       END IF
  584: *
  585:       IF( ILBSCL ) THEN
  586:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  587:       END IF
  588: *
  589:       WORK( 1 ) = LWKOPT
  590:       RETURN
  591: *
  592: *     End of DGGEV3
  593: *
  594:       END

CVSweb interface <joel.bertrand@systella.fr>