Annotation of rpl/lapack/lapack/dggesx.f, revision 1.8

1.8     ! bertrand    1: *> \brief <b> DGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGGESX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggesx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggesx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggesx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
        !            22: *                          B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
        !            23: *                          VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
        !            24: *                          LIWORK, BWORK, INFO )
        !            25: * 
        !            26: *       .. Scalar Arguments ..
        !            27: *       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
        !            28: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
        !            29: *      $                   SDIM
        !            30: *       ..
        !            31: *       .. Array Arguments ..
        !            32: *       LOGICAL            BWORK( * )
        !            33: *       INTEGER            IWORK( * )
        !            34: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !            35: *      $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
        !            36: *      $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
        !            37: *      $                   WORK( * )
        !            38: *       ..
        !            39: *       .. Function Arguments ..
        !            40: *       LOGICAL            SELCTG
        !            41: *       EXTERNAL           SELCTG
        !            42: *       ..
        !            43: *  
        !            44: *
        !            45: *> \par Purpose:
        !            46: *  =============
        !            47: *>
        !            48: *> \verbatim
        !            49: *>
        !            50: *> DGGESX computes for a pair of N-by-N real nonsymmetric matrices
        !            51: *> (A,B), the generalized eigenvalues, the real Schur form (S,T), and,
        !            52: *> optionally, the left and/or right matrices of Schur vectors (VSL and
        !            53: *> VSR).  This gives the generalized Schur factorization
        !            54: *>
        !            55: *>      (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
        !            56: *>
        !            57: *> Optionally, it also orders the eigenvalues so that a selected cluster
        !            58: *> of eigenvalues appears in the leading diagonal blocks of the upper
        !            59: *> quasi-triangular matrix S and the upper triangular matrix T; computes
        !            60: *> a reciprocal condition number for the average of the selected
        !            61: *> eigenvalues (RCONDE); and computes a reciprocal condition number for
        !            62: *> the right and left deflating subspaces corresponding to the selected
        !            63: *> eigenvalues (RCONDV). The leading columns of VSL and VSR then form
        !            64: *> an orthonormal basis for the corresponding left and right eigenspaces
        !            65: *> (deflating subspaces).
        !            66: *>
        !            67: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
        !            68: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
        !            69: *> usually represented as the pair (alpha,beta), as there is a
        !            70: *> reasonable interpretation for beta=0 or for both being zero.
        !            71: *>
        !            72: *> A pair of matrices (S,T) is in generalized real Schur form if T is
        !            73: *> upper triangular with non-negative diagonal and S is block upper
        !            74: *> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
        !            75: *> to real generalized eigenvalues, while 2-by-2 blocks of S will be
        !            76: *> "standardized" by making the corresponding elements of T have the
        !            77: *> form:
        !            78: *>         [  a  0  ]
        !            79: *>         [  0  b  ]
        !            80: *>
        !            81: *> and the pair of corresponding 2-by-2 blocks in S and T will have a
        !            82: *> complex conjugate pair of generalized eigenvalues.
        !            83: *>
        !            84: *> \endverbatim
        !            85: *
        !            86: *  Arguments:
        !            87: *  ==========
        !            88: *
        !            89: *> \param[in] JOBVSL
        !            90: *> \verbatim
        !            91: *>          JOBVSL is CHARACTER*1
        !            92: *>          = 'N':  do not compute the left Schur vectors;
        !            93: *>          = 'V':  compute the left Schur vectors.
        !            94: *> \endverbatim
        !            95: *>
        !            96: *> \param[in] JOBVSR
        !            97: *> \verbatim
        !            98: *>          JOBVSR is CHARACTER*1
        !            99: *>          = 'N':  do not compute the right Schur vectors;
        !           100: *>          = 'V':  compute the right Schur vectors.
        !           101: *> \endverbatim
        !           102: *>
        !           103: *> \param[in] SORT
        !           104: *> \verbatim
        !           105: *>          SORT is CHARACTER*1
        !           106: *>          Specifies whether or not to order the eigenvalues on the
        !           107: *>          diagonal of the generalized Schur form.
        !           108: *>          = 'N':  Eigenvalues are not ordered;
        !           109: *>          = 'S':  Eigenvalues are ordered (see SELCTG).
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in] SELCTG
        !           113: *> \verbatim
        !           114: *>          SELCTG is procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
        !           115: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
        !           116: *>          If SORT = 'N', SELCTG is not referenced.
        !           117: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
        !           118: *>          to the top left of the Schur form.
        !           119: *>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
        !           120: *>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
        !           121: *>          one of a complex conjugate pair of eigenvalues is selected,
        !           122: *>          then both complex eigenvalues are selected.
        !           123: *>          Note that a selected complex eigenvalue may no longer satisfy
        !           124: *>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
        !           125: *>          since ordering may change the value of complex eigenvalues
        !           126: *>          (especially if the eigenvalue is ill-conditioned), in this
        !           127: *>          case INFO is set to N+3.
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[in] SENSE
        !           131: *> \verbatim
        !           132: *>          SENSE is CHARACTER*1
        !           133: *>          Determines which reciprocal condition numbers are computed.
        !           134: *>          = 'N' : None are computed;
        !           135: *>          = 'E' : Computed for average of selected eigenvalues only;
        !           136: *>          = 'V' : Computed for selected deflating subspaces only;
        !           137: *>          = 'B' : Computed for both.
        !           138: *>          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
        !           139: *> \endverbatim
        !           140: *>
        !           141: *> \param[in] N
        !           142: *> \verbatim
        !           143: *>          N is INTEGER
        !           144: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
        !           145: *> \endverbatim
        !           146: *>
        !           147: *> \param[in,out] A
        !           148: *> \verbatim
        !           149: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
        !           150: *>          On entry, the first of the pair of matrices.
        !           151: *>          On exit, A has been overwritten by its generalized Schur
        !           152: *>          form S.
        !           153: *> \endverbatim
        !           154: *>
        !           155: *> \param[in] LDA
        !           156: *> \verbatim
        !           157: *>          LDA is INTEGER
        !           158: *>          The leading dimension of A.  LDA >= max(1,N).
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[in,out] B
        !           162: *> \verbatim
        !           163: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
        !           164: *>          On entry, the second of the pair of matrices.
        !           165: *>          On exit, B has been overwritten by its generalized Schur
        !           166: *>          form T.
        !           167: *> \endverbatim
        !           168: *>
        !           169: *> \param[in] LDB
        !           170: *> \verbatim
        !           171: *>          LDB is INTEGER
        !           172: *>          The leading dimension of B.  LDB >= max(1,N).
        !           173: *> \endverbatim
        !           174: *>
        !           175: *> \param[out] SDIM
        !           176: *> \verbatim
        !           177: *>          SDIM is INTEGER
        !           178: *>          If SORT = 'N', SDIM = 0.
        !           179: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
        !           180: *>          for which SELCTG is true.  (Complex conjugate pairs for which
        !           181: *>          SELCTG is true for either eigenvalue count as 2.)
        !           182: *> \endverbatim
        !           183: *>
        !           184: *> \param[out] ALPHAR
        !           185: *> \verbatim
        !           186: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
        !           187: *> \endverbatim
        !           188: *>
        !           189: *> \param[out] ALPHAI
        !           190: *> \verbatim
        !           191: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
        !           192: *> \endverbatim
        !           193: *>
        !           194: *> \param[out] BETA
        !           195: *> \verbatim
        !           196: *>          BETA is DOUBLE PRECISION array, dimension (N)
        !           197: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
        !           198: *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
        !           199: *>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
        !           200: *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
        !           201: *>          the real Schur form of (A,B) were further reduced to
        !           202: *>          triangular form using 2-by-2 complex unitary transformations.
        !           203: *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
        !           204: *>          positive, then the j-th and (j+1)-st eigenvalues are a
        !           205: *>          complex conjugate pair, with ALPHAI(j+1) negative.
        !           206: *>
        !           207: *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
        !           208: *>          may easily over- or underflow, and BETA(j) may even be zero.
        !           209: *>          Thus, the user should avoid naively computing the ratio.
        !           210: *>          However, ALPHAR and ALPHAI will be always less than and
        !           211: *>          usually comparable with norm(A) in magnitude, and BETA always
        !           212: *>          less than and usually comparable with norm(B).
        !           213: *> \endverbatim
        !           214: *>
        !           215: *> \param[out] VSL
        !           216: *> \verbatim
        !           217: *>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
        !           218: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
        !           219: *>          Not referenced if JOBVSL = 'N'.
        !           220: *> \endverbatim
        !           221: *>
        !           222: *> \param[in] LDVSL
        !           223: *> \verbatim
        !           224: *>          LDVSL is INTEGER
        !           225: *>          The leading dimension of the matrix VSL. LDVSL >=1, and
        !           226: *>          if JOBVSL = 'V', LDVSL >= N.
        !           227: *> \endverbatim
        !           228: *>
        !           229: *> \param[out] VSR
        !           230: *> \verbatim
        !           231: *>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
        !           232: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
        !           233: *>          Not referenced if JOBVSR = 'N'.
        !           234: *> \endverbatim
        !           235: *>
        !           236: *> \param[in] LDVSR
        !           237: *> \verbatim
        !           238: *>          LDVSR is INTEGER
        !           239: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
        !           240: *>          if JOBVSR = 'V', LDVSR >= N.
        !           241: *> \endverbatim
        !           242: *>
        !           243: *> \param[out] RCONDE
        !           244: *> \verbatim
        !           245: *>          RCONDE is DOUBLE PRECISION array, dimension ( 2 )
        !           246: *>          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
        !           247: *>          reciprocal condition numbers for the average of the selected
        !           248: *>          eigenvalues.
        !           249: *>          Not referenced if SENSE = 'N' or 'V'.
        !           250: *> \endverbatim
        !           251: *>
        !           252: *> \param[out] RCONDV
        !           253: *> \verbatim
        !           254: *>          RCONDV is DOUBLE PRECISION array, dimension ( 2 )
        !           255: *>          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
        !           256: *>          reciprocal condition numbers for the selected deflating
        !           257: *>          subspaces.
        !           258: *>          Not referenced if SENSE = 'N' or 'E'.
        !           259: *> \endverbatim
        !           260: *>
        !           261: *> \param[out] WORK
        !           262: *> \verbatim
        !           263: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           264: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           265: *> \endverbatim
        !           266: *>
        !           267: *> \param[in] LWORK
        !           268: *> \verbatim
        !           269: *>          LWORK is INTEGER
        !           270: *>          The dimension of the array WORK.
        !           271: *>          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
        !           272: *>          LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
        !           273: *>          LWORK >= max( 8*N, 6*N+16 ).
        !           274: *>          Note that 2*SDIM*(N-SDIM) <= N*N/2.
        !           275: *>          Note also that an error is only returned if
        !           276: *>          LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
        !           277: *>          this may not be large enough.
        !           278: *>
        !           279: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           280: *>          only calculates the bound on the optimal size of the WORK
        !           281: *>          array and the minimum size of the IWORK array, returns these
        !           282: *>          values as the first entries of the WORK and IWORK arrays, and
        !           283: *>          no error message related to LWORK or LIWORK is issued by
        !           284: *>          XERBLA.
        !           285: *> \endverbatim
        !           286: *>
        !           287: *> \param[out] IWORK
        !           288: *> \verbatim
        !           289: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           290: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
        !           291: *> \endverbatim
        !           292: *>
        !           293: *> \param[in] LIWORK
        !           294: *> \verbatim
        !           295: *>          LIWORK is INTEGER
        !           296: *>          The dimension of the array IWORK.
        !           297: *>          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
        !           298: *>          LIWORK >= N+6.
        !           299: *>
        !           300: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           301: *>          routine only calculates the bound on the optimal size of the
        !           302: *>          WORK array and the minimum size of the IWORK array, returns
        !           303: *>          these values as the first entries of the WORK and IWORK
        !           304: *>          arrays, and no error message related to LWORK or LIWORK is
        !           305: *>          issued by XERBLA.
        !           306: *> \endverbatim
        !           307: *>
        !           308: *> \param[out] BWORK
        !           309: *> \verbatim
        !           310: *>          BWORK is LOGICAL array, dimension (N)
        !           311: *>          Not referenced if SORT = 'N'.
        !           312: *> \endverbatim
        !           313: *>
        !           314: *> \param[out] INFO
        !           315: *> \verbatim
        !           316: *>          INFO is INTEGER
        !           317: *>          = 0:  successful exit
        !           318: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           319: *>          = 1,...,N:
        !           320: *>                The QZ iteration failed.  (A,B) are not in Schur
        !           321: *>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
        !           322: *>                be correct for j=INFO+1,...,N.
        !           323: *>          > N:  =N+1: other than QZ iteration failed in DHGEQZ
        !           324: *>                =N+2: after reordering, roundoff changed values of
        !           325: *>                      some complex eigenvalues so that leading
        !           326: *>                      eigenvalues in the Generalized Schur form no
        !           327: *>                      longer satisfy SELCTG=.TRUE.  This could also
        !           328: *>                      be caused due to scaling.
        !           329: *>                =N+3: reordering failed in DTGSEN.
        !           330: *> \endverbatim
        !           331: *
        !           332: *  Authors:
        !           333: *  ========
        !           334: *
        !           335: *> \author Univ. of Tennessee 
        !           336: *> \author Univ. of California Berkeley 
        !           337: *> \author Univ. of Colorado Denver 
        !           338: *> \author NAG Ltd. 
        !           339: *
        !           340: *> \date November 2011
        !           341: *
        !           342: *> \ingroup doubleGEeigen
        !           343: *
        !           344: *> \par Further Details:
        !           345: *  =====================
        !           346: *>
        !           347: *> \verbatim
        !           348: *>
        !           349: *>  An approximate (asymptotic) bound on the average absolute error of
        !           350: *>  the selected eigenvalues is
        !           351: *>
        !           352: *>       EPS * norm((A, B)) / RCONDE( 1 ).
        !           353: *>
        !           354: *>  An approximate (asymptotic) bound on the maximum angular error in
        !           355: *>  the computed deflating subspaces is
        !           356: *>
        !           357: *>       EPS * norm((A, B)) / RCONDV( 2 ).
        !           358: *>
        !           359: *>  See LAPACK User's Guide, section 4.11 for more information.
        !           360: *> \endverbatim
        !           361: *>
        !           362: *  =====================================================================
1.1       bertrand  363:       SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                    364:      $                   B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
                    365:      $                   VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
                    366:      $                   LIWORK, BWORK, INFO )
                    367: *
1.8     ! bertrand  368: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  369: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    370: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  371: *     November 2011
1.1       bertrand  372: *
                    373: *     .. Scalar Arguments ..
                    374:       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                    375:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                    376:      $                   SDIM
                    377: *     ..
                    378: *     .. Array Arguments ..
                    379:       LOGICAL            BWORK( * )
                    380:       INTEGER            IWORK( * )
                    381:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                    382:      $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
                    383:      $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                    384:      $                   WORK( * )
                    385: *     ..
                    386: *     .. Function Arguments ..
                    387:       LOGICAL            SELCTG
                    388:       EXTERNAL           SELCTG
                    389: *     ..
                    390: *
                    391: *  =====================================================================
                    392: *
                    393: *     .. Parameters ..
                    394:       DOUBLE PRECISION   ZERO, ONE
                    395:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    396: *     ..
                    397: *     .. Local Scalars ..
                    398:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    399:      $                   LQUERY, LST2SL, WANTSB, WANTSE, WANTSN, WANTST,
                    400:      $                   WANTSV
                    401:       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
                    402:      $                   ILEFT, ILO, IP, IRIGHT, IROWS, ITAU, IWRK,
                    403:      $                   LIWMIN, LWRK, MAXWRK, MINWRK
                    404:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
                    405:      $                   PR, SAFMAX, SAFMIN, SMLNUM
                    406: *     ..
                    407: *     .. Local Arrays ..
                    408:       DOUBLE PRECISION   DIF( 2 )
                    409: *     ..
                    410: *     .. External Subroutines ..
                    411:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
                    412:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
                    413:      $                   XERBLA
                    414: *     ..
                    415: *     .. External Functions ..
                    416:       LOGICAL            LSAME
                    417:       INTEGER            ILAENV
                    418:       DOUBLE PRECISION   DLAMCH, DLANGE
                    419:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    420: *     ..
                    421: *     .. Intrinsic Functions ..
                    422:       INTRINSIC          ABS, MAX, SQRT
                    423: *     ..
                    424: *     .. Executable Statements ..
                    425: *
                    426: *     Decode the input arguments
                    427: *
                    428:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    429:          IJOBVL = 1
                    430:          ILVSL = .FALSE.
                    431:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    432:          IJOBVL = 2
                    433:          ILVSL = .TRUE.
                    434:       ELSE
                    435:          IJOBVL = -1
                    436:          ILVSL = .FALSE.
                    437:       END IF
                    438: *
                    439:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    440:          IJOBVR = 1
                    441:          ILVSR = .FALSE.
                    442:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    443:          IJOBVR = 2
                    444:          ILVSR = .TRUE.
                    445:       ELSE
                    446:          IJOBVR = -1
                    447:          ILVSR = .FALSE.
                    448:       END IF
                    449: *
                    450:       WANTST = LSAME( SORT, 'S' )
                    451:       WANTSN = LSAME( SENSE, 'N' )
                    452:       WANTSE = LSAME( SENSE, 'E' )
                    453:       WANTSV = LSAME( SENSE, 'V' )
                    454:       WANTSB = LSAME( SENSE, 'B' )
                    455:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    456:       IF( WANTSN ) THEN
                    457:          IJOB = 0
                    458:       ELSE IF( WANTSE ) THEN
                    459:          IJOB = 1
                    460:       ELSE IF( WANTSV ) THEN
                    461:          IJOB = 2
                    462:       ELSE IF( WANTSB ) THEN
                    463:          IJOB = 4
                    464:       END IF
                    465: *
                    466: *     Test the input arguments
                    467: *
                    468:       INFO = 0
                    469:       IF( IJOBVL.LE.0 ) THEN
                    470:          INFO = -1
                    471:       ELSE IF( IJOBVR.LE.0 ) THEN
                    472:          INFO = -2
                    473:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    474:          INFO = -3
                    475:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    476:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    477:          INFO = -5
                    478:       ELSE IF( N.LT.0 ) THEN
                    479:          INFO = -6
                    480:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    481:          INFO = -8
                    482:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    483:          INFO = -10
                    484:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    485:          INFO = -16
                    486:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    487:          INFO = -18
                    488:       END IF
                    489: *
                    490: *     Compute workspace
                    491: *      (Note: Comments in the code beginning "Workspace:" describe the
                    492: *       minimal amount of workspace needed at that point in the code,
                    493: *       as well as the preferred amount for good performance.
                    494: *       NB refers to the optimal block size for the immediately
                    495: *       following subroutine, as returned by ILAENV.)
                    496: *
                    497:       IF( INFO.EQ.0 ) THEN
                    498:          IF( N.GT.0) THEN
                    499:             MINWRK = MAX( 8*N, 6*N + 16 )
                    500:             MAXWRK = MINWRK - N +
                    501:      $               N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 )
                    502:             MAXWRK = MAX( MAXWRK, MINWRK - N +
                    503:      $               N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, -1 ) )
                    504:             IF( ILVSL ) THEN
                    505:                MAXWRK = MAX( MAXWRK, MINWRK - N +
                    506:      $                  N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
                    507:             END IF
                    508:             LWRK = MAXWRK
                    509:             IF( IJOB.GE.1 )
                    510:      $         LWRK = MAX( LWRK, N*N/2 )
                    511:          ELSE
                    512:             MINWRK = 1
                    513:             MAXWRK = 1
                    514:             LWRK   = 1
                    515:          END IF
                    516:          WORK( 1 ) = LWRK
                    517:          IF( WANTSN .OR. N.EQ.0 ) THEN
                    518:             LIWMIN = 1
                    519:          ELSE
                    520:             LIWMIN = N + 6
                    521:          END IF
                    522:          IWORK( 1 ) = LIWMIN
                    523: *
                    524:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    525:             INFO = -22
                    526:          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY ) THEN
                    527:             INFO = -24
                    528:          END IF
                    529:       END IF
                    530: *
                    531:       IF( INFO.NE.0 ) THEN
                    532:          CALL XERBLA( 'DGGESX', -INFO )
                    533:          RETURN
                    534:       ELSE IF (LQUERY) THEN
                    535:          RETURN
                    536:       END IF
                    537: *
                    538: *     Quick return if possible
                    539: *
                    540:       IF( N.EQ.0 ) THEN
                    541:          SDIM = 0
                    542:          RETURN
                    543:       END IF
                    544: *
                    545: *     Get machine constants
                    546: *
                    547:       EPS = DLAMCH( 'P' )
                    548:       SAFMIN = DLAMCH( 'S' )
                    549:       SAFMAX = ONE / SAFMIN
                    550:       CALL DLABAD( SAFMIN, SAFMAX )
                    551:       SMLNUM = SQRT( SAFMIN ) / EPS
                    552:       BIGNUM = ONE / SMLNUM
                    553: *
                    554: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    555: *
                    556:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    557:       ILASCL = .FALSE.
                    558:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    559:          ANRMTO = SMLNUM
                    560:          ILASCL = .TRUE.
                    561:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    562:          ANRMTO = BIGNUM
                    563:          ILASCL = .TRUE.
                    564:       END IF
                    565:       IF( ILASCL )
                    566:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    567: *
                    568: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    569: *
                    570:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    571:       ILBSCL = .FALSE.
                    572:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    573:          BNRMTO = SMLNUM
                    574:          ILBSCL = .TRUE.
                    575:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    576:          BNRMTO = BIGNUM
                    577:          ILBSCL = .TRUE.
                    578:       END IF
                    579:       IF( ILBSCL )
                    580:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    581: *
                    582: *     Permute the matrix to make it more nearly triangular
                    583: *     (Workspace: need 6*N + 2*N for permutation parameters)
                    584: *
                    585:       ILEFT = 1
                    586:       IRIGHT = N + 1
                    587:       IWRK = IRIGHT + N
                    588:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
                    589:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
                    590: *
                    591: *     Reduce B to triangular form (QR decomposition of B)
                    592: *     (Workspace: need N, prefer N*NB)
                    593: *
                    594:       IROWS = IHI + 1 - ILO
                    595:       ICOLS = N + 1 - ILO
                    596:       ITAU = IWRK
                    597:       IWRK = ITAU + IROWS
                    598:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    599:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    600: *
                    601: *     Apply the orthogonal transformation to matrix A
                    602: *     (Workspace: need N, prefer N*NB)
                    603: *
                    604:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    605:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    606:      $             LWORK+1-IWRK, IERR )
                    607: *
                    608: *     Initialize VSL
                    609: *     (Workspace: need N, prefer N*NB)
                    610: *
                    611:       IF( ILVSL ) THEN
                    612:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
                    613:          IF( IROWS.GT.1 ) THEN
                    614:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    615:      $                   VSL( ILO+1, ILO ), LDVSL )
                    616:          END IF
                    617:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    618:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    619:       END IF
                    620: *
                    621: *     Initialize VSR
                    622: *
                    623:       IF( ILVSR )
                    624:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
                    625: *
                    626: *     Reduce to generalized Hessenberg form
                    627: *     (Workspace: none needed)
                    628: *
                    629:       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    630:      $             LDVSL, VSR, LDVSR, IERR )
                    631: *
                    632:       SDIM = 0
                    633: *
                    634: *     Perform QZ algorithm, computing Schur vectors if desired
                    635: *     (Workspace: need N)
                    636: *
                    637:       IWRK = ITAU
                    638:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    639:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
                    640:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    641:       IF( IERR.NE.0 ) THEN
                    642:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    643:             INFO = IERR
                    644:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    645:             INFO = IERR - N
                    646:          ELSE
                    647:             INFO = N + 1
                    648:          END IF
                    649:          GO TO 60
                    650:       END IF
                    651: *
                    652: *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
                    653: *     condition number(s)
                    654: *     (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) )
                    655: *                 otherwise, need 8*(N+1) )
                    656: *
                    657:       IF( WANTST ) THEN
                    658: *
                    659: *        Undo scaling on eigenvalues before SELCTGing
                    660: *
                    661:          IF( ILASCL ) THEN
                    662:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
                    663:      $                   IERR )
                    664:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
                    665:      $                   IERR )
                    666:          END IF
                    667:          IF( ILBSCL )
                    668:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    669: *
                    670: *        Select eigenvalues
                    671: *
                    672:          DO 10 I = 1, N
                    673:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    674:    10    CONTINUE
                    675: *
                    676: *        Reorder eigenvalues, transform Generalized Schur vectors, and
                    677: *        compute reciprocal condition numbers
                    678: *
                    679:          CALL DTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
                    680:      $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
                    681:      $                SDIM, PL, PR, DIF, WORK( IWRK ), LWORK-IWRK+1,
                    682:      $                IWORK, LIWORK, IERR )
                    683: *
                    684:          IF( IJOB.GE.1 )
                    685:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
                    686:          IF( IERR.EQ.-22 ) THEN
                    687: *
                    688: *            not enough real workspace
                    689: *
                    690:             INFO = -22
                    691:          ELSE
                    692:             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
                    693:                RCONDE( 1 ) = PL
                    694:                RCONDE( 2 ) = PR
                    695:             END IF
                    696:             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    697:                RCONDV( 1 ) = DIF( 1 )
                    698:                RCONDV( 2 ) = DIF( 2 )
                    699:             END IF
                    700:             IF( IERR.EQ.1 )
                    701:      $         INFO = N + 3
                    702:          END IF
                    703: *
                    704:       END IF
                    705: *
                    706: *     Apply permutation to VSL and VSR
                    707: *     (Workspace: none needed)
                    708: *
                    709:       IF( ILVSL )
                    710:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
                    711:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    712: *
                    713:       IF( ILVSR )
                    714:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
                    715:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    716: *
                    717: *     Check if unscaling would cause over/underflow, if so, rescale
                    718: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
                    719: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
                    720: *
                    721:       IF( ILASCL ) THEN
                    722:          DO 20 I = 1, N
                    723:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    724:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
                    725:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
                    726:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
                    727:                   BETA( I ) = BETA( I )*WORK( 1 )
                    728:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    729:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    730:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
                    731:      $                  ( ANRMTO / ANRM ) .OR.
                    732:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
                    733:      $                   THEN
                    734:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
                    735:                   BETA( I ) = BETA( I )*WORK( 1 )
                    736:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    737:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    738:                END IF
                    739:             END IF
                    740:    20    CONTINUE
                    741:       END IF
                    742: *
                    743:       IF( ILBSCL ) THEN
                    744:          DO 30 I = 1, N
                    745:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    746:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
                    747:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
                    748:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
                    749:                   BETA( I ) = BETA( I )*WORK( 1 )
                    750:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    751:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    752:                END IF
                    753:             END IF
                    754:    30    CONTINUE
                    755:       END IF
                    756: *
                    757: *     Undo scaling
                    758: *
                    759:       IF( ILASCL ) THEN
                    760:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    761:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
                    762:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
                    763:       END IF
                    764: *
                    765:       IF( ILBSCL ) THEN
                    766:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    767:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    768:       END IF
                    769: *
                    770:       IF( WANTST ) THEN
                    771: *
                    772: *        Check if reordering is correct
                    773: *
                    774:          LASTSL = .TRUE.
                    775:          LST2SL = .TRUE.
                    776:          SDIM = 0
                    777:          IP = 0
                    778:          DO 50 I = 1, N
                    779:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    780:             IF( ALPHAI( I ).EQ.ZERO ) THEN
                    781:                IF( CURSL )
                    782:      $            SDIM = SDIM + 1
                    783:                IP = 0
                    784:                IF( CURSL .AND. .NOT.LASTSL )
                    785:      $            INFO = N + 2
                    786:             ELSE
                    787:                IF( IP.EQ.1 ) THEN
                    788: *
                    789: *                 Last eigenvalue of conjugate pair
                    790: *
                    791:                   CURSL = CURSL .OR. LASTSL
                    792:                   LASTSL = CURSL
                    793:                   IF( CURSL )
                    794:      $               SDIM = SDIM + 2
                    795:                   IP = -1
                    796:                   IF( CURSL .AND. .NOT.LST2SL )
                    797:      $               INFO = N + 2
                    798:                ELSE
                    799: *
                    800: *                 First eigenvalue of conjugate pair
                    801: *
                    802:                   IP = 1
                    803:                END IF
                    804:             END IF
                    805:             LST2SL = LASTSL
                    806:             LASTSL = CURSL
                    807:    50    CONTINUE
                    808: *
                    809:       END IF
                    810: *
                    811:    60 CONTINUE
                    812: *
                    813:       WORK( 1 ) = MAXWRK
                    814:       IWORK( 1 ) = LIWMIN
                    815: *
                    816:       RETURN
                    817: *
                    818: *     End of DGGESX
                    819: *
                    820:       END

CVSweb interface <joel.bertrand@systella.fr>