Annotation of rpl/lapack/lapack/dggesx.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                      2:      $                   B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
                      3:      $                   VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
                      4:      $                   LIWORK, BWORK, INFO )
                      5: *
                      6: *  -- LAPACK driver routine (version 3.2.1)                           --
                      7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      9: *  -- April 2009                                                      --
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                     13:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                     14:      $                   SDIM
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       LOGICAL            BWORK( * )
                     18:       INTEGER            IWORK( * )
                     19:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                     20:      $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
                     21:      $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                     22:      $                   WORK( * )
                     23: *     ..
                     24: *     .. Function Arguments ..
                     25:       LOGICAL            SELCTG
                     26:       EXTERNAL           SELCTG
                     27: *     ..
                     28: *
                     29: *  Purpose
                     30: *  =======
                     31: *
                     32: *  DGGESX computes for a pair of N-by-N real nonsymmetric matrices
                     33: *  (A,B), the generalized eigenvalues, the real Schur form (S,T), and,
                     34: *  optionally, the left and/or right matrices of Schur vectors (VSL and
                     35: *  VSR).  This gives the generalized Schur factorization
                     36: *
                     37: *       (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
                     38: *
                     39: *  Optionally, it also orders the eigenvalues so that a selected cluster
                     40: *  of eigenvalues appears in the leading diagonal blocks of the upper
                     41: *  quasi-triangular matrix S and the upper triangular matrix T; computes
                     42: *  a reciprocal condition number for the average of the selected
                     43: *  eigenvalues (RCONDE); and computes a reciprocal condition number for
                     44: *  the right and left deflating subspaces corresponding to the selected
                     45: *  eigenvalues (RCONDV). The leading columns of VSL and VSR then form
                     46: *  an orthonormal basis for the corresponding left and right eigenspaces
                     47: *  (deflating subspaces).
                     48: *
                     49: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
                     50: *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
                     51: *  usually represented as the pair (alpha,beta), as there is a
                     52: *  reasonable interpretation for beta=0 or for both being zero.
                     53: *
                     54: *  A pair of matrices (S,T) is in generalized real Schur form if T is
                     55: *  upper triangular with non-negative diagonal and S is block upper
                     56: *  triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
                     57: *  to real generalized eigenvalues, while 2-by-2 blocks of S will be
                     58: *  "standardized" by making the corresponding elements of T have the
                     59: *  form:
                     60: *          [  a  0  ]
                     61: *          [  0  b  ]
                     62: *
                     63: *  and the pair of corresponding 2-by-2 blocks in S and T will have a
                     64: *  complex conjugate pair of generalized eigenvalues.
                     65: *
                     66: *
                     67: *  Arguments
                     68: *  =========
                     69: *
                     70: *  JOBVSL  (input) CHARACTER*1
                     71: *          = 'N':  do not compute the left Schur vectors;
                     72: *          = 'V':  compute the left Schur vectors.
                     73: *
                     74: *  JOBVSR  (input) CHARACTER*1
                     75: *          = 'N':  do not compute the right Schur vectors;
                     76: *          = 'V':  compute the right Schur vectors.
                     77: *
                     78: *  SORT    (input) CHARACTER*1
                     79: *          Specifies whether or not to order the eigenvalues on the
                     80: *          diagonal of the generalized Schur form.
                     81: *          = 'N':  Eigenvalues are not ordered;
                     82: *          = 'S':  Eigenvalues are ordered (see SELCTG).
                     83: *
                     84: *  SELCTG  (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
                     85: *          SELCTG must be declared EXTERNAL in the calling subroutine.
                     86: *          If SORT = 'N', SELCTG is not referenced.
                     87: *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
                     88: *          to the top left of the Schur form.
                     89: *          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
                     90: *          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
                     91: *          one of a complex conjugate pair of eigenvalues is selected,
                     92: *          then both complex eigenvalues are selected.
                     93: *          Note that a selected complex eigenvalue may no longer satisfy
                     94: *          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
                     95: *          since ordering may change the value of complex eigenvalues
                     96: *          (especially if the eigenvalue is ill-conditioned), in this
                     97: *          case INFO is set to N+3.
                     98: *
                     99: *  SENSE   (input) CHARACTER*1
                    100: *          Determines which reciprocal condition numbers are computed.
                    101: *          = 'N' : None are computed;
                    102: *          = 'E' : Computed for average of selected eigenvalues only;
                    103: *          = 'V' : Computed for selected deflating subspaces only;
                    104: *          = 'B' : Computed for both.
                    105: *          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
                    106: *
                    107: *  N       (input) INTEGER
                    108: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
                    109: *
                    110: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                    111: *          On entry, the first of the pair of matrices.
                    112: *          On exit, A has been overwritten by its generalized Schur
                    113: *          form S.
                    114: *
                    115: *  LDA     (input) INTEGER
                    116: *          The leading dimension of A.  LDA >= max(1,N).
                    117: *
                    118: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
                    119: *          On entry, the second of the pair of matrices.
                    120: *          On exit, B has been overwritten by its generalized Schur
                    121: *          form T.
                    122: *
                    123: *  LDB     (input) INTEGER
                    124: *          The leading dimension of B.  LDB >= max(1,N).
                    125: *
                    126: *  SDIM    (output) INTEGER
                    127: *          If SORT = 'N', SDIM = 0.
                    128: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    129: *          for which SELCTG is true.  (Complex conjugate pairs for which
                    130: *          SELCTG is true for either eigenvalue count as 2.)
                    131: *
                    132: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
                    133: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
                    134: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
                    135: *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
                    136: *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
                    137: *          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
                    138: *          form (S,T) that would result if the 2-by-2 diagonal blocks of
                    139: *          the real Schur form of (A,B) were further reduced to
                    140: *          triangular form using 2-by-2 complex unitary transformations.
                    141: *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
                    142: *          positive, then the j-th and (j+1)-st eigenvalues are a
                    143: *          complex conjugate pair, with ALPHAI(j+1) negative.
                    144: *
                    145: *          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
                    146: *          may easily over- or underflow, and BETA(j) may even be zero.
                    147: *          Thus, the user should avoid naively computing the ratio.
                    148: *          However, ALPHAR and ALPHAI will be always less than and
                    149: *          usually comparable with norm(A) in magnitude, and BETA always
                    150: *          less than and usually comparable with norm(B).
                    151: *
                    152: *  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
                    153: *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
                    154: *          Not referenced if JOBVSL = 'N'.
                    155: *
                    156: *  LDVSL   (input) INTEGER
                    157: *          The leading dimension of the matrix VSL. LDVSL >=1, and
                    158: *          if JOBVSL = 'V', LDVSL >= N.
                    159: *
                    160: *  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
                    161: *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
                    162: *          Not referenced if JOBVSR = 'N'.
                    163: *
                    164: *  LDVSR   (input) INTEGER
                    165: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
                    166: *          if JOBVSR = 'V', LDVSR >= N.
                    167: *
                    168: *  RCONDE  (output) DOUBLE PRECISION array, dimension ( 2 )
                    169: *          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
                    170: *          reciprocal condition numbers for the average of the selected
                    171: *          eigenvalues.
                    172: *          Not referenced if SENSE = 'N' or 'V'.
                    173: *
                    174: *  RCONDV  (output) DOUBLE PRECISION array, dimension ( 2 )
                    175: *          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
                    176: *          reciprocal condition numbers for the selected deflating
                    177: *          subspaces.
                    178: *          Not referenced if SENSE = 'N' or 'E'.
                    179: *
                    180: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    181: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    182: *
                    183: *  LWORK   (input) INTEGER
                    184: *          The dimension of the array WORK.
                    185: *          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
                    186: *          LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
                    187: *          LWORK >= max( 8*N, 6*N+16 ).
                    188: *          Note that 2*SDIM*(N-SDIM) <= N*N/2.
                    189: *          Note also that an error is only returned if
                    190: *          LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
                    191: *          this may not be large enough.
                    192: *
                    193: *          If LWORK = -1, then a workspace query is assumed; the routine
                    194: *          only calculates the bound on the optimal size of the WORK
                    195: *          array and the minimum size of the IWORK array, returns these
                    196: *          values as the first entries of the WORK and IWORK arrays, and
                    197: *          no error message related to LWORK or LIWORK is issued by
                    198: *          XERBLA.
                    199: *
                    200: *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
                    201: *          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
                    202: *
                    203: *  LIWORK  (input) INTEGER
                    204: *          The dimension of the array IWORK.
                    205: *          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
                    206: *          LIWORK >= N+6.
                    207: *
                    208: *          If LIWORK = -1, then a workspace query is assumed; the
                    209: *          routine only calculates the bound on the optimal size of the
                    210: *          WORK array and the minimum size of the IWORK array, returns
                    211: *          these values as the first entries of the WORK and IWORK
                    212: *          arrays, and no error message related to LWORK or LIWORK is
                    213: *          issued by XERBLA.
                    214: *
                    215: *  BWORK   (workspace) LOGICAL array, dimension (N)
                    216: *          Not referenced if SORT = 'N'.
                    217: *
                    218: *  INFO    (output) INTEGER
                    219: *          = 0:  successful exit
                    220: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    221: *          = 1,...,N:
                    222: *                The QZ iteration failed.  (A,B) are not in Schur
                    223: *                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
                    224: *                be correct for j=INFO+1,...,N.
                    225: *          > N:  =N+1: other than QZ iteration failed in DHGEQZ
                    226: *                =N+2: after reordering, roundoff changed values of
                    227: *                      some complex eigenvalues so that leading
                    228: *                      eigenvalues in the Generalized Schur form no
                    229: *                      longer satisfy SELCTG=.TRUE.  This could also
                    230: *                      be caused due to scaling.
                    231: *                =N+3: reordering failed in DTGSEN.
                    232: *
                    233: *  Further Details
                    234: *  ===============
                    235: *
                    236: *  An approximate (asymptotic) bound on the average absolute error of
                    237: *  the selected eigenvalues is
                    238: *
                    239: *       EPS * norm((A, B)) / RCONDE( 1 ).
                    240: *
                    241: *  An approximate (asymptotic) bound on the maximum angular error in
                    242: *  the computed deflating subspaces is
                    243: *
                    244: *       EPS * norm((A, B)) / RCONDV( 2 ).
                    245: *
                    246: *  See LAPACK User's Guide, section 4.11 for more information.
                    247: *
                    248: *  =====================================================================
                    249: *
                    250: *     .. Parameters ..
                    251:       DOUBLE PRECISION   ZERO, ONE
                    252:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    253: *     ..
                    254: *     .. Local Scalars ..
                    255:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    256:      $                   LQUERY, LST2SL, WANTSB, WANTSE, WANTSN, WANTST,
                    257:      $                   WANTSV
                    258:       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
                    259:      $                   ILEFT, ILO, IP, IRIGHT, IROWS, ITAU, IWRK,
                    260:      $                   LIWMIN, LWRK, MAXWRK, MINWRK
                    261:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
                    262:      $                   PR, SAFMAX, SAFMIN, SMLNUM
                    263: *     ..
                    264: *     .. Local Arrays ..
                    265:       DOUBLE PRECISION   DIF( 2 )
                    266: *     ..
                    267: *     .. External Subroutines ..
                    268:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
                    269:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
                    270:      $                   XERBLA
                    271: *     ..
                    272: *     .. External Functions ..
                    273:       LOGICAL            LSAME
                    274:       INTEGER            ILAENV
                    275:       DOUBLE PRECISION   DLAMCH, DLANGE
                    276:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    277: *     ..
                    278: *     .. Intrinsic Functions ..
                    279:       INTRINSIC          ABS, MAX, SQRT
                    280: *     ..
                    281: *     .. Executable Statements ..
                    282: *
                    283: *     Decode the input arguments
                    284: *
                    285:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    286:          IJOBVL = 1
                    287:          ILVSL = .FALSE.
                    288:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    289:          IJOBVL = 2
                    290:          ILVSL = .TRUE.
                    291:       ELSE
                    292:          IJOBVL = -1
                    293:          ILVSL = .FALSE.
                    294:       END IF
                    295: *
                    296:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    297:          IJOBVR = 1
                    298:          ILVSR = .FALSE.
                    299:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    300:          IJOBVR = 2
                    301:          ILVSR = .TRUE.
                    302:       ELSE
                    303:          IJOBVR = -1
                    304:          ILVSR = .FALSE.
                    305:       END IF
                    306: *
                    307:       WANTST = LSAME( SORT, 'S' )
                    308:       WANTSN = LSAME( SENSE, 'N' )
                    309:       WANTSE = LSAME( SENSE, 'E' )
                    310:       WANTSV = LSAME( SENSE, 'V' )
                    311:       WANTSB = LSAME( SENSE, 'B' )
                    312:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    313:       IF( WANTSN ) THEN
                    314:          IJOB = 0
                    315:       ELSE IF( WANTSE ) THEN
                    316:          IJOB = 1
                    317:       ELSE IF( WANTSV ) THEN
                    318:          IJOB = 2
                    319:       ELSE IF( WANTSB ) THEN
                    320:          IJOB = 4
                    321:       END IF
                    322: *
                    323: *     Test the input arguments
                    324: *
                    325:       INFO = 0
                    326:       IF( IJOBVL.LE.0 ) THEN
                    327:          INFO = -1
                    328:       ELSE IF( IJOBVR.LE.0 ) THEN
                    329:          INFO = -2
                    330:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    331:          INFO = -3
                    332:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    333:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    334:          INFO = -5
                    335:       ELSE IF( N.LT.0 ) THEN
                    336:          INFO = -6
                    337:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    338:          INFO = -8
                    339:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    340:          INFO = -10
                    341:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    342:          INFO = -16
                    343:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    344:          INFO = -18
                    345:       END IF
                    346: *
                    347: *     Compute workspace
                    348: *      (Note: Comments in the code beginning "Workspace:" describe the
                    349: *       minimal amount of workspace needed at that point in the code,
                    350: *       as well as the preferred amount for good performance.
                    351: *       NB refers to the optimal block size for the immediately
                    352: *       following subroutine, as returned by ILAENV.)
                    353: *
                    354:       IF( INFO.EQ.0 ) THEN
                    355:          IF( N.GT.0) THEN
                    356:             MINWRK = MAX( 8*N, 6*N + 16 )
                    357:             MAXWRK = MINWRK - N +
                    358:      $               N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 )
                    359:             MAXWRK = MAX( MAXWRK, MINWRK - N +
                    360:      $               N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, -1 ) )
                    361:             IF( ILVSL ) THEN
                    362:                MAXWRK = MAX( MAXWRK, MINWRK - N +
                    363:      $                  N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
                    364:             END IF
                    365:             LWRK = MAXWRK
                    366:             IF( IJOB.GE.1 )
                    367:      $         LWRK = MAX( LWRK, N*N/2 )
                    368:          ELSE
                    369:             MINWRK = 1
                    370:             MAXWRK = 1
                    371:             LWRK   = 1
                    372:          END IF
                    373:          WORK( 1 ) = LWRK
                    374:          IF( WANTSN .OR. N.EQ.0 ) THEN
                    375:             LIWMIN = 1
                    376:          ELSE
                    377:             LIWMIN = N + 6
                    378:          END IF
                    379:          IWORK( 1 ) = LIWMIN
                    380: *
                    381:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    382:             INFO = -22
                    383:          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY ) THEN
                    384:             INFO = -24
                    385:          END IF
                    386:       END IF
                    387: *
                    388:       IF( INFO.NE.0 ) THEN
                    389:          CALL XERBLA( 'DGGESX', -INFO )
                    390:          RETURN
                    391:       ELSE IF (LQUERY) THEN
                    392:          RETURN
                    393:       END IF
                    394: *
                    395: *     Quick return if possible
                    396: *
                    397:       IF( N.EQ.0 ) THEN
                    398:          SDIM = 0
                    399:          RETURN
                    400:       END IF
                    401: *
                    402: *     Get machine constants
                    403: *
                    404:       EPS = DLAMCH( 'P' )
                    405:       SAFMIN = DLAMCH( 'S' )
                    406:       SAFMAX = ONE / SAFMIN
                    407:       CALL DLABAD( SAFMIN, SAFMAX )
                    408:       SMLNUM = SQRT( SAFMIN ) / EPS
                    409:       BIGNUM = ONE / SMLNUM
                    410: *
                    411: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    412: *
                    413:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    414:       ILASCL = .FALSE.
                    415:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    416:          ANRMTO = SMLNUM
                    417:          ILASCL = .TRUE.
                    418:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    419:          ANRMTO = BIGNUM
                    420:          ILASCL = .TRUE.
                    421:       END IF
                    422:       IF( ILASCL )
                    423:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    424: *
                    425: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    426: *
                    427:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    428:       ILBSCL = .FALSE.
                    429:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    430:          BNRMTO = SMLNUM
                    431:          ILBSCL = .TRUE.
                    432:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    433:          BNRMTO = BIGNUM
                    434:          ILBSCL = .TRUE.
                    435:       END IF
                    436:       IF( ILBSCL )
                    437:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    438: *
                    439: *     Permute the matrix to make it more nearly triangular
                    440: *     (Workspace: need 6*N + 2*N for permutation parameters)
                    441: *
                    442:       ILEFT = 1
                    443:       IRIGHT = N + 1
                    444:       IWRK = IRIGHT + N
                    445:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
                    446:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
                    447: *
                    448: *     Reduce B to triangular form (QR decomposition of B)
                    449: *     (Workspace: need N, prefer N*NB)
                    450: *
                    451:       IROWS = IHI + 1 - ILO
                    452:       ICOLS = N + 1 - ILO
                    453:       ITAU = IWRK
                    454:       IWRK = ITAU + IROWS
                    455:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    456:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    457: *
                    458: *     Apply the orthogonal transformation to matrix A
                    459: *     (Workspace: need N, prefer N*NB)
                    460: *
                    461:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    462:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    463:      $             LWORK+1-IWRK, IERR )
                    464: *
                    465: *     Initialize VSL
                    466: *     (Workspace: need N, prefer N*NB)
                    467: *
                    468:       IF( ILVSL ) THEN
                    469:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
                    470:          IF( IROWS.GT.1 ) THEN
                    471:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    472:      $                   VSL( ILO+1, ILO ), LDVSL )
                    473:          END IF
                    474:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    475:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    476:       END IF
                    477: *
                    478: *     Initialize VSR
                    479: *
                    480:       IF( ILVSR )
                    481:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
                    482: *
                    483: *     Reduce to generalized Hessenberg form
                    484: *     (Workspace: none needed)
                    485: *
                    486:       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    487:      $             LDVSL, VSR, LDVSR, IERR )
                    488: *
                    489:       SDIM = 0
                    490: *
                    491: *     Perform QZ algorithm, computing Schur vectors if desired
                    492: *     (Workspace: need N)
                    493: *
                    494:       IWRK = ITAU
                    495:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    496:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
                    497:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    498:       IF( IERR.NE.0 ) THEN
                    499:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    500:             INFO = IERR
                    501:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    502:             INFO = IERR - N
                    503:          ELSE
                    504:             INFO = N + 1
                    505:          END IF
                    506:          GO TO 60
                    507:       END IF
                    508: *
                    509: *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
                    510: *     condition number(s)
                    511: *     (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) )
                    512: *                 otherwise, need 8*(N+1) )
                    513: *
                    514:       IF( WANTST ) THEN
                    515: *
                    516: *        Undo scaling on eigenvalues before SELCTGing
                    517: *
                    518:          IF( ILASCL ) THEN
                    519:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
                    520:      $                   IERR )
                    521:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
                    522:      $                   IERR )
                    523:          END IF
                    524:          IF( ILBSCL )
                    525:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    526: *
                    527: *        Select eigenvalues
                    528: *
                    529:          DO 10 I = 1, N
                    530:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    531:    10    CONTINUE
                    532: *
                    533: *        Reorder eigenvalues, transform Generalized Schur vectors, and
                    534: *        compute reciprocal condition numbers
                    535: *
                    536:          CALL DTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
                    537:      $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
                    538:      $                SDIM, PL, PR, DIF, WORK( IWRK ), LWORK-IWRK+1,
                    539:      $                IWORK, LIWORK, IERR )
                    540: *
                    541:          IF( IJOB.GE.1 )
                    542:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
                    543:          IF( IERR.EQ.-22 ) THEN
                    544: *
                    545: *            not enough real workspace
                    546: *
                    547:             INFO = -22
                    548:          ELSE
                    549:             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
                    550:                RCONDE( 1 ) = PL
                    551:                RCONDE( 2 ) = PR
                    552:             END IF
                    553:             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    554:                RCONDV( 1 ) = DIF( 1 )
                    555:                RCONDV( 2 ) = DIF( 2 )
                    556:             END IF
                    557:             IF( IERR.EQ.1 )
                    558:      $         INFO = N + 3
                    559:          END IF
                    560: *
                    561:       END IF
                    562: *
                    563: *     Apply permutation to VSL and VSR
                    564: *     (Workspace: none needed)
                    565: *
                    566:       IF( ILVSL )
                    567:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
                    568:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    569: *
                    570:       IF( ILVSR )
                    571:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
                    572:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    573: *
                    574: *     Check if unscaling would cause over/underflow, if so, rescale
                    575: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
                    576: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
                    577: *
                    578:       IF( ILASCL ) THEN
                    579:          DO 20 I = 1, N
                    580:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    581:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
                    582:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
                    583:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
                    584:                   BETA( I ) = BETA( I )*WORK( 1 )
                    585:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    586:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    587:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
                    588:      $                  ( ANRMTO / ANRM ) .OR.
                    589:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
                    590:      $                   THEN
                    591:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
                    592:                   BETA( I ) = BETA( I )*WORK( 1 )
                    593:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    594:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    595:                END IF
                    596:             END IF
                    597:    20    CONTINUE
                    598:       END IF
                    599: *
                    600:       IF( ILBSCL ) THEN
                    601:          DO 30 I = 1, N
                    602:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    603:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
                    604:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
                    605:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
                    606:                   BETA( I ) = BETA( I )*WORK( 1 )
                    607:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    608:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    609:                END IF
                    610:             END IF
                    611:    30    CONTINUE
                    612:       END IF
                    613: *
                    614: *     Undo scaling
                    615: *
                    616:       IF( ILASCL ) THEN
                    617:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    618:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
                    619:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
                    620:       END IF
                    621: *
                    622:       IF( ILBSCL ) THEN
                    623:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    624:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    625:       END IF
                    626: *
                    627:       IF( WANTST ) THEN
                    628: *
                    629: *        Check if reordering is correct
                    630: *
                    631:          LASTSL = .TRUE.
                    632:          LST2SL = .TRUE.
                    633:          SDIM = 0
                    634:          IP = 0
                    635:          DO 50 I = 1, N
                    636:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    637:             IF( ALPHAI( I ).EQ.ZERO ) THEN
                    638:                IF( CURSL )
                    639:      $            SDIM = SDIM + 1
                    640:                IP = 0
                    641:                IF( CURSL .AND. .NOT.LASTSL )
                    642:      $            INFO = N + 2
                    643:             ELSE
                    644:                IF( IP.EQ.1 ) THEN
                    645: *
                    646: *                 Last eigenvalue of conjugate pair
                    647: *
                    648:                   CURSL = CURSL .OR. LASTSL
                    649:                   LASTSL = CURSL
                    650:                   IF( CURSL )
                    651:      $               SDIM = SDIM + 2
                    652:                   IP = -1
                    653:                   IF( CURSL .AND. .NOT.LST2SL )
                    654:      $               INFO = N + 2
                    655:                ELSE
                    656: *
                    657: *                 First eigenvalue of conjugate pair
                    658: *
                    659:                   IP = 1
                    660:                END IF
                    661:             END IF
                    662:             LST2SL = LASTSL
                    663:             LASTSL = CURSL
                    664:    50    CONTINUE
                    665: *
                    666:       END IF
                    667: *
                    668:    60 CONTINUE
                    669: *
                    670:       WORK( 1 ) = MAXWRK
                    671:       IWORK( 1 ) = LIWMIN
                    672: *
                    673:       RETURN
                    674: *
                    675: *     End of DGGESX
                    676: *
                    677:       END

CVSweb interface <joel.bertrand@systella.fr>