Annotation of rpl/lapack/lapack/dggesx.f, revision 1.19

1.8       bertrand    1: *> \brief <b> DGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DGGESX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggesx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggesx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggesx.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                     22: *                          B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
                     23: *                          VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
                     24: *                          LIWORK, BWORK, INFO )
1.14      bertrand   25: *
1.8       bertrand   26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                     28: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                     29: *      $                   SDIM
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       LOGICAL            BWORK( * )
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                     35: *      $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
                     36: *      $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                     37: *      $                   WORK( * )
                     38: *       ..
                     39: *       .. Function Arguments ..
                     40: *       LOGICAL            SELCTG
                     41: *       EXTERNAL           SELCTG
                     42: *       ..
1.14      bertrand   43: *
1.8       bertrand   44: *
                     45: *> \par Purpose:
                     46: *  =============
                     47: *>
                     48: *> \verbatim
                     49: *>
                     50: *> DGGESX computes for a pair of N-by-N real nonsymmetric matrices
                     51: *> (A,B), the generalized eigenvalues, the real Schur form (S,T), and,
                     52: *> optionally, the left and/or right matrices of Schur vectors (VSL and
                     53: *> VSR).  This gives the generalized Schur factorization
                     54: *>
                     55: *>      (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
                     56: *>
                     57: *> Optionally, it also orders the eigenvalues so that a selected cluster
                     58: *> of eigenvalues appears in the leading diagonal blocks of the upper
                     59: *> quasi-triangular matrix S and the upper triangular matrix T; computes
                     60: *> a reciprocal condition number for the average of the selected
                     61: *> eigenvalues (RCONDE); and computes a reciprocal condition number for
                     62: *> the right and left deflating subspaces corresponding to the selected
                     63: *> eigenvalues (RCONDV). The leading columns of VSL and VSR then form
                     64: *> an orthonormal basis for the corresponding left and right eigenspaces
                     65: *> (deflating subspaces).
                     66: *>
                     67: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
                     68: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
                     69: *> usually represented as the pair (alpha,beta), as there is a
                     70: *> reasonable interpretation for beta=0 or for both being zero.
                     71: *>
                     72: *> A pair of matrices (S,T) is in generalized real Schur form if T is
                     73: *> upper triangular with non-negative diagonal and S is block upper
                     74: *> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
                     75: *> to real generalized eigenvalues, while 2-by-2 blocks of S will be
                     76: *> "standardized" by making the corresponding elements of T have the
                     77: *> form:
                     78: *>         [  a  0  ]
                     79: *>         [  0  b  ]
                     80: *>
                     81: *> and the pair of corresponding 2-by-2 blocks in S and T will have a
                     82: *> complex conjugate pair of generalized eigenvalues.
                     83: *>
                     84: *> \endverbatim
                     85: *
                     86: *  Arguments:
                     87: *  ==========
                     88: *
                     89: *> \param[in] JOBVSL
                     90: *> \verbatim
                     91: *>          JOBVSL is CHARACTER*1
                     92: *>          = 'N':  do not compute the left Schur vectors;
                     93: *>          = 'V':  compute the left Schur vectors.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] JOBVSR
                     97: *> \verbatim
                     98: *>          JOBVSR is CHARACTER*1
                     99: *>          = 'N':  do not compute the right Schur vectors;
                    100: *>          = 'V':  compute the right Schur vectors.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] SORT
                    104: *> \verbatim
                    105: *>          SORT is CHARACTER*1
                    106: *>          Specifies whether or not to order the eigenvalues on the
                    107: *>          diagonal of the generalized Schur form.
                    108: *>          = 'N':  Eigenvalues are not ordered;
                    109: *>          = 'S':  Eigenvalues are ordered (see SELCTG).
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] SELCTG
                    113: *> \verbatim
1.16      bertrand  114: *>          SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments
1.8       bertrand  115: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
                    116: *>          If SORT = 'N', SELCTG is not referenced.
                    117: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
                    118: *>          to the top left of the Schur form.
                    119: *>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
                    120: *>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
                    121: *>          one of a complex conjugate pair of eigenvalues is selected,
                    122: *>          then both complex eigenvalues are selected.
                    123: *>          Note that a selected complex eigenvalue may no longer satisfy
                    124: *>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
                    125: *>          since ordering may change the value of complex eigenvalues
                    126: *>          (especially if the eigenvalue is ill-conditioned), in this
                    127: *>          case INFO is set to N+3.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] SENSE
                    131: *> \verbatim
                    132: *>          SENSE is CHARACTER*1
                    133: *>          Determines which reciprocal condition numbers are computed.
1.18      bertrand  134: *>          = 'N':  None are computed;
                    135: *>          = 'E':  Computed for average of selected eigenvalues only;
                    136: *>          = 'V':  Computed for selected deflating subspaces only;
                    137: *>          = 'B':  Computed for both.
1.8       bertrand  138: *>          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in] N
                    142: *> \verbatim
                    143: *>          N is INTEGER
                    144: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in,out] A
                    148: *> \verbatim
                    149: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                    150: *>          On entry, the first of the pair of matrices.
                    151: *>          On exit, A has been overwritten by its generalized Schur
                    152: *>          form S.
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[in] LDA
                    156: *> \verbatim
                    157: *>          LDA is INTEGER
                    158: *>          The leading dimension of A.  LDA >= max(1,N).
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[in,out] B
                    162: *> \verbatim
                    163: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
                    164: *>          On entry, the second of the pair of matrices.
                    165: *>          On exit, B has been overwritten by its generalized Schur
                    166: *>          form T.
                    167: *> \endverbatim
                    168: *>
                    169: *> \param[in] LDB
                    170: *> \verbatim
                    171: *>          LDB is INTEGER
                    172: *>          The leading dimension of B.  LDB >= max(1,N).
                    173: *> \endverbatim
                    174: *>
                    175: *> \param[out] SDIM
                    176: *> \verbatim
                    177: *>          SDIM is INTEGER
                    178: *>          If SORT = 'N', SDIM = 0.
                    179: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    180: *>          for which SELCTG is true.  (Complex conjugate pairs for which
                    181: *>          SELCTG is true for either eigenvalue count as 2.)
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[out] ALPHAR
                    185: *> \verbatim
                    186: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
                    187: *> \endverbatim
                    188: *>
                    189: *> \param[out] ALPHAI
                    190: *> \verbatim
                    191: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] BETA
                    195: *> \verbatim
                    196: *>          BETA is DOUBLE PRECISION array, dimension (N)
                    197: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
                    198: *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
                    199: *>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
                    200: *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
                    201: *>          the real Schur form of (A,B) were further reduced to
                    202: *>          triangular form using 2-by-2 complex unitary transformations.
                    203: *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
                    204: *>          positive, then the j-th and (j+1)-st eigenvalues are a
                    205: *>          complex conjugate pair, with ALPHAI(j+1) negative.
                    206: *>
                    207: *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
                    208: *>          may easily over- or underflow, and BETA(j) may even be zero.
                    209: *>          Thus, the user should avoid naively computing the ratio.
                    210: *>          However, ALPHAR and ALPHAI will be always less than and
                    211: *>          usually comparable with norm(A) in magnitude, and BETA always
                    212: *>          less than and usually comparable with norm(B).
                    213: *> \endverbatim
                    214: *>
                    215: *> \param[out] VSL
                    216: *> \verbatim
                    217: *>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
                    218: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
                    219: *>          Not referenced if JOBVSL = 'N'.
                    220: *> \endverbatim
                    221: *>
                    222: *> \param[in] LDVSL
                    223: *> \verbatim
                    224: *>          LDVSL is INTEGER
                    225: *>          The leading dimension of the matrix VSL. LDVSL >=1, and
                    226: *>          if JOBVSL = 'V', LDVSL >= N.
                    227: *> \endverbatim
                    228: *>
                    229: *> \param[out] VSR
                    230: *> \verbatim
                    231: *>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
                    232: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
                    233: *>          Not referenced if JOBVSR = 'N'.
                    234: *> \endverbatim
                    235: *>
                    236: *> \param[in] LDVSR
                    237: *> \verbatim
                    238: *>          LDVSR is INTEGER
                    239: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
                    240: *>          if JOBVSR = 'V', LDVSR >= N.
                    241: *> \endverbatim
                    242: *>
                    243: *> \param[out] RCONDE
                    244: *> \verbatim
                    245: *>          RCONDE is DOUBLE PRECISION array, dimension ( 2 )
                    246: *>          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
                    247: *>          reciprocal condition numbers for the average of the selected
                    248: *>          eigenvalues.
                    249: *>          Not referenced if SENSE = 'N' or 'V'.
                    250: *> \endverbatim
                    251: *>
                    252: *> \param[out] RCONDV
                    253: *> \verbatim
                    254: *>          RCONDV is DOUBLE PRECISION array, dimension ( 2 )
                    255: *>          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
                    256: *>          reciprocal condition numbers for the selected deflating
                    257: *>          subspaces.
                    258: *>          Not referenced if SENSE = 'N' or 'E'.
                    259: *> \endverbatim
                    260: *>
                    261: *> \param[out] WORK
                    262: *> \verbatim
                    263: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    264: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    265: *> \endverbatim
                    266: *>
                    267: *> \param[in] LWORK
                    268: *> \verbatim
                    269: *>          LWORK is INTEGER
                    270: *>          The dimension of the array WORK.
                    271: *>          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
                    272: *>          LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
                    273: *>          LWORK >= max( 8*N, 6*N+16 ).
                    274: *>          Note that 2*SDIM*(N-SDIM) <= N*N/2.
                    275: *>          Note also that an error is only returned if
                    276: *>          LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
                    277: *>          this may not be large enough.
                    278: *>
                    279: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    280: *>          only calculates the bound on the optimal size of the WORK
                    281: *>          array and the minimum size of the IWORK array, returns these
                    282: *>          values as the first entries of the WORK and IWORK arrays, and
                    283: *>          no error message related to LWORK or LIWORK is issued by
                    284: *>          XERBLA.
                    285: *> \endverbatim
                    286: *>
                    287: *> \param[out] IWORK
                    288: *> \verbatim
                    289: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    290: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
                    291: *> \endverbatim
                    292: *>
                    293: *> \param[in] LIWORK
                    294: *> \verbatim
                    295: *>          LIWORK is INTEGER
                    296: *>          The dimension of the array IWORK.
                    297: *>          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
                    298: *>          LIWORK >= N+6.
                    299: *>
                    300: *>          If LIWORK = -1, then a workspace query is assumed; the
                    301: *>          routine only calculates the bound on the optimal size of the
                    302: *>          WORK array and the minimum size of the IWORK array, returns
                    303: *>          these values as the first entries of the WORK and IWORK
                    304: *>          arrays, and no error message related to LWORK or LIWORK is
                    305: *>          issued by XERBLA.
                    306: *> \endverbatim
                    307: *>
                    308: *> \param[out] BWORK
                    309: *> \verbatim
                    310: *>          BWORK is LOGICAL array, dimension (N)
                    311: *>          Not referenced if SORT = 'N'.
                    312: *> \endverbatim
                    313: *>
                    314: *> \param[out] INFO
                    315: *> \verbatim
                    316: *>          INFO is INTEGER
                    317: *>          = 0:  successful exit
                    318: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    319: *>          = 1,...,N:
                    320: *>                The QZ iteration failed.  (A,B) are not in Schur
                    321: *>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
                    322: *>                be correct for j=INFO+1,...,N.
                    323: *>          > N:  =N+1: other than QZ iteration failed in DHGEQZ
                    324: *>                =N+2: after reordering, roundoff changed values of
                    325: *>                      some complex eigenvalues so that leading
                    326: *>                      eigenvalues in the Generalized Schur form no
                    327: *>                      longer satisfy SELCTG=.TRUE.  This could also
                    328: *>                      be caused due to scaling.
                    329: *>                =N+3: reordering failed in DTGSEN.
                    330: *> \endverbatim
                    331: *
                    332: *  Authors:
                    333: *  ========
                    334: *
1.14      bertrand  335: *> \author Univ. of Tennessee
                    336: *> \author Univ. of California Berkeley
                    337: *> \author Univ. of Colorado Denver
                    338: *> \author NAG Ltd.
1.8       bertrand  339: *
                    340: *> \ingroup doubleGEeigen
                    341: *
                    342: *> \par Further Details:
                    343: *  =====================
                    344: *>
                    345: *> \verbatim
                    346: *>
                    347: *>  An approximate (asymptotic) bound on the average absolute error of
                    348: *>  the selected eigenvalues is
                    349: *>
                    350: *>       EPS * norm((A, B)) / RCONDE( 1 ).
                    351: *>
                    352: *>  An approximate (asymptotic) bound on the maximum angular error in
                    353: *>  the computed deflating subspaces is
                    354: *>
                    355: *>       EPS * norm((A, B)) / RCONDV( 2 ).
                    356: *>
                    357: *>  See LAPACK User's Guide, section 4.11 for more information.
                    358: *> \endverbatim
                    359: *>
                    360: *  =====================================================================
1.1       bertrand  361:       SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                    362:      $                   B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
                    363:      $                   VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
                    364:      $                   LIWORK, BWORK, INFO )
                    365: *
1.19    ! bertrand  366: *  -- LAPACK driver routine --
1.1       bertrand  367: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    368: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    369: *
                    370: *     .. Scalar Arguments ..
                    371:       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                    372:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                    373:      $                   SDIM
                    374: *     ..
                    375: *     .. Array Arguments ..
                    376:       LOGICAL            BWORK( * )
                    377:       INTEGER            IWORK( * )
                    378:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                    379:      $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
                    380:      $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                    381:      $                   WORK( * )
                    382: *     ..
                    383: *     .. Function Arguments ..
                    384:       LOGICAL            SELCTG
                    385:       EXTERNAL           SELCTG
                    386: *     ..
                    387: *
                    388: *  =====================================================================
                    389: *
                    390: *     .. Parameters ..
                    391:       DOUBLE PRECISION   ZERO, ONE
                    392:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    393: *     ..
                    394: *     .. Local Scalars ..
                    395:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    396:      $                   LQUERY, LST2SL, WANTSB, WANTSE, WANTSN, WANTST,
                    397:      $                   WANTSV
                    398:       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
                    399:      $                   ILEFT, ILO, IP, IRIGHT, IROWS, ITAU, IWRK,
                    400:      $                   LIWMIN, LWRK, MAXWRK, MINWRK
                    401:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
                    402:      $                   PR, SAFMAX, SAFMIN, SMLNUM
                    403: *     ..
                    404: *     .. Local Arrays ..
                    405:       DOUBLE PRECISION   DIF( 2 )
                    406: *     ..
                    407: *     .. External Subroutines ..
                    408:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
                    409:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
                    410:      $                   XERBLA
                    411: *     ..
                    412: *     .. External Functions ..
                    413:       LOGICAL            LSAME
                    414:       INTEGER            ILAENV
                    415:       DOUBLE PRECISION   DLAMCH, DLANGE
                    416:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    417: *     ..
                    418: *     .. Intrinsic Functions ..
                    419:       INTRINSIC          ABS, MAX, SQRT
                    420: *     ..
                    421: *     .. Executable Statements ..
                    422: *
                    423: *     Decode the input arguments
                    424: *
                    425:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    426:          IJOBVL = 1
                    427:          ILVSL = .FALSE.
                    428:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    429:          IJOBVL = 2
                    430:          ILVSL = .TRUE.
                    431:       ELSE
                    432:          IJOBVL = -1
                    433:          ILVSL = .FALSE.
                    434:       END IF
                    435: *
                    436:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    437:          IJOBVR = 1
                    438:          ILVSR = .FALSE.
                    439:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    440:          IJOBVR = 2
                    441:          ILVSR = .TRUE.
                    442:       ELSE
                    443:          IJOBVR = -1
                    444:          ILVSR = .FALSE.
                    445:       END IF
                    446: *
                    447:       WANTST = LSAME( SORT, 'S' )
                    448:       WANTSN = LSAME( SENSE, 'N' )
                    449:       WANTSE = LSAME( SENSE, 'E' )
                    450:       WANTSV = LSAME( SENSE, 'V' )
                    451:       WANTSB = LSAME( SENSE, 'B' )
                    452:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    453:       IF( WANTSN ) THEN
                    454:          IJOB = 0
                    455:       ELSE IF( WANTSE ) THEN
                    456:          IJOB = 1
                    457:       ELSE IF( WANTSV ) THEN
                    458:          IJOB = 2
                    459:       ELSE IF( WANTSB ) THEN
                    460:          IJOB = 4
                    461:       END IF
                    462: *
                    463: *     Test the input arguments
                    464: *
                    465:       INFO = 0
                    466:       IF( IJOBVL.LE.0 ) THEN
                    467:          INFO = -1
                    468:       ELSE IF( IJOBVR.LE.0 ) THEN
                    469:          INFO = -2
                    470:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    471:          INFO = -3
                    472:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    473:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    474:          INFO = -5
                    475:       ELSE IF( N.LT.0 ) THEN
                    476:          INFO = -6
                    477:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    478:          INFO = -8
                    479:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    480:          INFO = -10
                    481:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    482:          INFO = -16
                    483:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    484:          INFO = -18
                    485:       END IF
                    486: *
                    487: *     Compute workspace
                    488: *      (Note: Comments in the code beginning "Workspace:" describe the
                    489: *       minimal amount of workspace needed at that point in the code,
                    490: *       as well as the preferred amount for good performance.
                    491: *       NB refers to the optimal block size for the immediately
                    492: *       following subroutine, as returned by ILAENV.)
                    493: *
                    494:       IF( INFO.EQ.0 ) THEN
                    495:          IF( N.GT.0) THEN
                    496:             MINWRK = MAX( 8*N, 6*N + 16 )
                    497:             MAXWRK = MINWRK - N +
                    498:      $               N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 )
                    499:             MAXWRK = MAX( MAXWRK, MINWRK - N +
                    500:      $               N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, -1 ) )
                    501:             IF( ILVSL ) THEN
                    502:                MAXWRK = MAX( MAXWRK, MINWRK - N +
                    503:      $                  N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
                    504:             END IF
                    505:             LWRK = MAXWRK
                    506:             IF( IJOB.GE.1 )
                    507:      $         LWRK = MAX( LWRK, N*N/2 )
                    508:          ELSE
                    509:             MINWRK = 1
                    510:             MAXWRK = 1
                    511:             LWRK   = 1
                    512:          END IF
                    513:          WORK( 1 ) = LWRK
                    514:          IF( WANTSN .OR. N.EQ.0 ) THEN
                    515:             LIWMIN = 1
                    516:          ELSE
                    517:             LIWMIN = N + 6
                    518:          END IF
                    519:          IWORK( 1 ) = LIWMIN
                    520: *
                    521:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    522:             INFO = -22
                    523:          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY ) THEN
                    524:             INFO = -24
                    525:          END IF
                    526:       END IF
                    527: *
                    528:       IF( INFO.NE.0 ) THEN
                    529:          CALL XERBLA( 'DGGESX', -INFO )
                    530:          RETURN
                    531:       ELSE IF (LQUERY) THEN
                    532:          RETURN
                    533:       END IF
                    534: *
                    535: *     Quick return if possible
                    536: *
                    537:       IF( N.EQ.0 ) THEN
                    538:          SDIM = 0
                    539:          RETURN
                    540:       END IF
                    541: *
                    542: *     Get machine constants
                    543: *
                    544:       EPS = DLAMCH( 'P' )
                    545:       SAFMIN = DLAMCH( 'S' )
                    546:       SAFMAX = ONE / SAFMIN
                    547:       CALL DLABAD( SAFMIN, SAFMAX )
                    548:       SMLNUM = SQRT( SAFMIN ) / EPS
                    549:       BIGNUM = ONE / SMLNUM
                    550: *
                    551: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    552: *
                    553:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    554:       ILASCL = .FALSE.
                    555:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    556:          ANRMTO = SMLNUM
                    557:          ILASCL = .TRUE.
                    558:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    559:          ANRMTO = BIGNUM
                    560:          ILASCL = .TRUE.
                    561:       END IF
                    562:       IF( ILASCL )
                    563:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    564: *
                    565: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    566: *
                    567:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    568:       ILBSCL = .FALSE.
                    569:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    570:          BNRMTO = SMLNUM
                    571:          ILBSCL = .TRUE.
                    572:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    573:          BNRMTO = BIGNUM
                    574:          ILBSCL = .TRUE.
                    575:       END IF
                    576:       IF( ILBSCL )
                    577:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    578: *
                    579: *     Permute the matrix to make it more nearly triangular
                    580: *     (Workspace: need 6*N + 2*N for permutation parameters)
                    581: *
                    582:       ILEFT = 1
                    583:       IRIGHT = N + 1
                    584:       IWRK = IRIGHT + N
                    585:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
                    586:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
                    587: *
                    588: *     Reduce B to triangular form (QR decomposition of B)
                    589: *     (Workspace: need N, prefer N*NB)
                    590: *
                    591:       IROWS = IHI + 1 - ILO
                    592:       ICOLS = N + 1 - ILO
                    593:       ITAU = IWRK
                    594:       IWRK = ITAU + IROWS
                    595:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    596:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    597: *
                    598: *     Apply the orthogonal transformation to matrix A
                    599: *     (Workspace: need N, prefer N*NB)
                    600: *
                    601:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    602:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    603:      $             LWORK+1-IWRK, IERR )
                    604: *
                    605: *     Initialize VSL
                    606: *     (Workspace: need N, prefer N*NB)
                    607: *
                    608:       IF( ILVSL ) THEN
                    609:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
                    610:          IF( IROWS.GT.1 ) THEN
                    611:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    612:      $                   VSL( ILO+1, ILO ), LDVSL )
                    613:          END IF
                    614:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    615:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    616:       END IF
                    617: *
                    618: *     Initialize VSR
                    619: *
                    620:       IF( ILVSR )
                    621:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
                    622: *
                    623: *     Reduce to generalized Hessenberg form
                    624: *     (Workspace: none needed)
                    625: *
                    626:       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    627:      $             LDVSL, VSR, LDVSR, IERR )
                    628: *
                    629:       SDIM = 0
                    630: *
                    631: *     Perform QZ algorithm, computing Schur vectors if desired
                    632: *     (Workspace: need N)
                    633: *
                    634:       IWRK = ITAU
                    635:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    636:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
                    637:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    638:       IF( IERR.NE.0 ) THEN
                    639:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    640:             INFO = IERR
                    641:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    642:             INFO = IERR - N
                    643:          ELSE
                    644:             INFO = N + 1
                    645:          END IF
                    646:          GO TO 60
                    647:       END IF
                    648: *
                    649: *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
                    650: *     condition number(s)
                    651: *     (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) )
                    652: *                 otherwise, need 8*(N+1) )
                    653: *
                    654:       IF( WANTST ) THEN
                    655: *
                    656: *        Undo scaling on eigenvalues before SELCTGing
                    657: *
                    658:          IF( ILASCL ) THEN
                    659:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
                    660:      $                   IERR )
                    661:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
                    662:      $                   IERR )
                    663:          END IF
                    664:          IF( ILBSCL )
                    665:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    666: *
                    667: *        Select eigenvalues
                    668: *
                    669:          DO 10 I = 1, N
                    670:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    671:    10    CONTINUE
                    672: *
                    673: *        Reorder eigenvalues, transform Generalized Schur vectors, and
                    674: *        compute reciprocal condition numbers
                    675: *
                    676:          CALL DTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
                    677:      $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
                    678:      $                SDIM, PL, PR, DIF, WORK( IWRK ), LWORK-IWRK+1,
                    679:      $                IWORK, LIWORK, IERR )
                    680: *
                    681:          IF( IJOB.GE.1 )
                    682:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
                    683:          IF( IERR.EQ.-22 ) THEN
                    684: *
                    685: *            not enough real workspace
                    686: *
                    687:             INFO = -22
                    688:          ELSE
                    689:             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
                    690:                RCONDE( 1 ) = PL
                    691:                RCONDE( 2 ) = PR
                    692:             END IF
                    693:             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    694:                RCONDV( 1 ) = DIF( 1 )
                    695:                RCONDV( 2 ) = DIF( 2 )
                    696:             END IF
                    697:             IF( IERR.EQ.1 )
                    698:      $         INFO = N + 3
                    699:          END IF
                    700: *
                    701:       END IF
                    702: *
                    703: *     Apply permutation to VSL and VSR
                    704: *     (Workspace: none needed)
                    705: *
                    706:       IF( ILVSL )
                    707:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
                    708:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    709: *
                    710:       IF( ILVSR )
                    711:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
                    712:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    713: *
                    714: *     Check if unscaling would cause over/underflow, if so, rescale
                    715: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
                    716: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
                    717: *
                    718:       IF( ILASCL ) THEN
                    719:          DO 20 I = 1, N
                    720:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    721:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
                    722:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
                    723:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
                    724:                   BETA( I ) = BETA( I )*WORK( 1 )
                    725:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    726:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    727:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
                    728:      $                  ( ANRMTO / ANRM ) .OR.
                    729:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
                    730:      $                   THEN
                    731:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
                    732:                   BETA( I ) = BETA( I )*WORK( 1 )
                    733:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    734:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    735:                END IF
                    736:             END IF
                    737:    20    CONTINUE
                    738:       END IF
                    739: *
                    740:       IF( ILBSCL ) THEN
                    741:          DO 30 I = 1, N
                    742:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    743:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
                    744:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
                    745:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
                    746:                   BETA( I ) = BETA( I )*WORK( 1 )
                    747:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    748:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    749:                END IF
                    750:             END IF
                    751:    30    CONTINUE
                    752:       END IF
                    753: *
                    754: *     Undo scaling
                    755: *
                    756:       IF( ILASCL ) THEN
                    757:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    758:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
                    759:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
                    760:       END IF
                    761: *
                    762:       IF( ILBSCL ) THEN
                    763:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    764:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    765:       END IF
                    766: *
                    767:       IF( WANTST ) THEN
                    768: *
                    769: *        Check if reordering is correct
                    770: *
                    771:          LASTSL = .TRUE.
                    772:          LST2SL = .TRUE.
                    773:          SDIM = 0
                    774:          IP = 0
                    775:          DO 50 I = 1, N
                    776:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    777:             IF( ALPHAI( I ).EQ.ZERO ) THEN
                    778:                IF( CURSL )
                    779:      $            SDIM = SDIM + 1
                    780:                IP = 0
                    781:                IF( CURSL .AND. .NOT.LASTSL )
                    782:      $            INFO = N + 2
                    783:             ELSE
                    784:                IF( IP.EQ.1 ) THEN
                    785: *
                    786: *                 Last eigenvalue of conjugate pair
                    787: *
                    788:                   CURSL = CURSL .OR. LASTSL
                    789:                   LASTSL = CURSL
                    790:                   IF( CURSL )
                    791:      $               SDIM = SDIM + 2
                    792:                   IP = -1
                    793:                   IF( CURSL .AND. .NOT.LST2SL )
                    794:      $               INFO = N + 2
                    795:                ELSE
                    796: *
                    797: *                 First eigenvalue of conjugate pair
                    798: *
                    799:                   IP = 1
                    800:                END IF
                    801:             END IF
                    802:             LST2SL = LASTSL
                    803:             LASTSL = CURSL
                    804:    50    CONTINUE
                    805: *
                    806:       END IF
                    807: *
                    808:    60 CONTINUE
                    809: *
                    810:       WORK( 1 ) = MAXWRK
                    811:       IWORK( 1 ) = LIWMIN
                    812: *
                    813:       RETURN
                    814: *
                    815: *     End of DGGESX
                    816: *
                    817:       END

CVSweb interface <joel.bertrand@systella.fr>