Annotation of rpl/lapack/lapack/dggesx.f, revision 1.13

1.8       bertrand    1: *> \brief <b> DGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGGESX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggesx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggesx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggesx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                     22: *                          B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
                     23: *                          VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
                     24: *                          LIWORK, BWORK, INFO )
                     25: * 
                     26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                     28: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                     29: *      $                   SDIM
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       LOGICAL            BWORK( * )
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                     35: *      $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
                     36: *      $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                     37: *      $                   WORK( * )
                     38: *       ..
                     39: *       .. Function Arguments ..
                     40: *       LOGICAL            SELCTG
                     41: *       EXTERNAL           SELCTG
                     42: *       ..
                     43: *  
                     44: *
                     45: *> \par Purpose:
                     46: *  =============
                     47: *>
                     48: *> \verbatim
                     49: *>
                     50: *> DGGESX computes for a pair of N-by-N real nonsymmetric matrices
                     51: *> (A,B), the generalized eigenvalues, the real Schur form (S,T), and,
                     52: *> optionally, the left and/or right matrices of Schur vectors (VSL and
                     53: *> VSR).  This gives the generalized Schur factorization
                     54: *>
                     55: *>      (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
                     56: *>
                     57: *> Optionally, it also orders the eigenvalues so that a selected cluster
                     58: *> of eigenvalues appears in the leading diagonal blocks of the upper
                     59: *> quasi-triangular matrix S and the upper triangular matrix T; computes
                     60: *> a reciprocal condition number for the average of the selected
                     61: *> eigenvalues (RCONDE); and computes a reciprocal condition number for
                     62: *> the right and left deflating subspaces corresponding to the selected
                     63: *> eigenvalues (RCONDV). The leading columns of VSL and VSR then form
                     64: *> an orthonormal basis for the corresponding left and right eigenspaces
                     65: *> (deflating subspaces).
                     66: *>
                     67: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
                     68: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
                     69: *> usually represented as the pair (alpha,beta), as there is a
                     70: *> reasonable interpretation for beta=0 or for both being zero.
                     71: *>
                     72: *> A pair of matrices (S,T) is in generalized real Schur form if T is
                     73: *> upper triangular with non-negative diagonal and S is block upper
                     74: *> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
                     75: *> to real generalized eigenvalues, while 2-by-2 blocks of S will be
                     76: *> "standardized" by making the corresponding elements of T have the
                     77: *> form:
                     78: *>         [  a  0  ]
                     79: *>         [  0  b  ]
                     80: *>
                     81: *> and the pair of corresponding 2-by-2 blocks in S and T will have a
                     82: *> complex conjugate pair of generalized eigenvalues.
                     83: *>
                     84: *> \endverbatim
                     85: *
                     86: *  Arguments:
                     87: *  ==========
                     88: *
                     89: *> \param[in] JOBVSL
                     90: *> \verbatim
                     91: *>          JOBVSL is CHARACTER*1
                     92: *>          = 'N':  do not compute the left Schur vectors;
                     93: *>          = 'V':  compute the left Schur vectors.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] JOBVSR
                     97: *> \verbatim
                     98: *>          JOBVSR is CHARACTER*1
                     99: *>          = 'N':  do not compute the right Schur vectors;
                    100: *>          = 'V':  compute the right Schur vectors.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] SORT
                    104: *> \verbatim
                    105: *>          SORT is CHARACTER*1
                    106: *>          Specifies whether or not to order the eigenvalues on the
                    107: *>          diagonal of the generalized Schur form.
                    108: *>          = 'N':  Eigenvalues are not ordered;
                    109: *>          = 'S':  Eigenvalues are ordered (see SELCTG).
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] SELCTG
                    113: *> \verbatim
                    114: *>          SELCTG is procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
                    115: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
                    116: *>          If SORT = 'N', SELCTG is not referenced.
                    117: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
                    118: *>          to the top left of the Schur form.
                    119: *>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
                    120: *>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
                    121: *>          one of a complex conjugate pair of eigenvalues is selected,
                    122: *>          then both complex eigenvalues are selected.
                    123: *>          Note that a selected complex eigenvalue may no longer satisfy
                    124: *>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
                    125: *>          since ordering may change the value of complex eigenvalues
                    126: *>          (especially if the eigenvalue is ill-conditioned), in this
                    127: *>          case INFO is set to N+3.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] SENSE
                    131: *> \verbatim
                    132: *>          SENSE is CHARACTER*1
                    133: *>          Determines which reciprocal condition numbers are computed.
                    134: *>          = 'N' : None are computed;
                    135: *>          = 'E' : Computed for average of selected eigenvalues only;
                    136: *>          = 'V' : Computed for selected deflating subspaces only;
                    137: *>          = 'B' : Computed for both.
                    138: *>          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in] N
                    142: *> \verbatim
                    143: *>          N is INTEGER
                    144: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in,out] A
                    148: *> \verbatim
                    149: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                    150: *>          On entry, the first of the pair of matrices.
                    151: *>          On exit, A has been overwritten by its generalized Schur
                    152: *>          form S.
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[in] LDA
                    156: *> \verbatim
                    157: *>          LDA is INTEGER
                    158: *>          The leading dimension of A.  LDA >= max(1,N).
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[in,out] B
                    162: *> \verbatim
                    163: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
                    164: *>          On entry, the second of the pair of matrices.
                    165: *>          On exit, B has been overwritten by its generalized Schur
                    166: *>          form T.
                    167: *> \endverbatim
                    168: *>
                    169: *> \param[in] LDB
                    170: *> \verbatim
                    171: *>          LDB is INTEGER
                    172: *>          The leading dimension of B.  LDB >= max(1,N).
                    173: *> \endverbatim
                    174: *>
                    175: *> \param[out] SDIM
                    176: *> \verbatim
                    177: *>          SDIM is INTEGER
                    178: *>          If SORT = 'N', SDIM = 0.
                    179: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    180: *>          for which SELCTG is true.  (Complex conjugate pairs for which
                    181: *>          SELCTG is true for either eigenvalue count as 2.)
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[out] ALPHAR
                    185: *> \verbatim
                    186: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
                    187: *> \endverbatim
                    188: *>
                    189: *> \param[out] ALPHAI
                    190: *> \verbatim
                    191: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] BETA
                    195: *> \verbatim
                    196: *>          BETA is DOUBLE PRECISION array, dimension (N)
                    197: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
                    198: *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
                    199: *>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
                    200: *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
                    201: *>          the real Schur form of (A,B) were further reduced to
                    202: *>          triangular form using 2-by-2 complex unitary transformations.
                    203: *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
                    204: *>          positive, then the j-th and (j+1)-st eigenvalues are a
                    205: *>          complex conjugate pair, with ALPHAI(j+1) negative.
                    206: *>
                    207: *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
                    208: *>          may easily over- or underflow, and BETA(j) may even be zero.
                    209: *>          Thus, the user should avoid naively computing the ratio.
                    210: *>          However, ALPHAR and ALPHAI will be always less than and
                    211: *>          usually comparable with norm(A) in magnitude, and BETA always
                    212: *>          less than and usually comparable with norm(B).
                    213: *> \endverbatim
                    214: *>
                    215: *> \param[out] VSL
                    216: *> \verbatim
                    217: *>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
                    218: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
                    219: *>          Not referenced if JOBVSL = 'N'.
                    220: *> \endverbatim
                    221: *>
                    222: *> \param[in] LDVSL
                    223: *> \verbatim
                    224: *>          LDVSL is INTEGER
                    225: *>          The leading dimension of the matrix VSL. LDVSL >=1, and
                    226: *>          if JOBVSL = 'V', LDVSL >= N.
                    227: *> \endverbatim
                    228: *>
                    229: *> \param[out] VSR
                    230: *> \verbatim
                    231: *>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
                    232: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
                    233: *>          Not referenced if JOBVSR = 'N'.
                    234: *> \endverbatim
                    235: *>
                    236: *> \param[in] LDVSR
                    237: *> \verbatim
                    238: *>          LDVSR is INTEGER
                    239: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
                    240: *>          if JOBVSR = 'V', LDVSR >= N.
                    241: *> \endverbatim
                    242: *>
                    243: *> \param[out] RCONDE
                    244: *> \verbatim
                    245: *>          RCONDE is DOUBLE PRECISION array, dimension ( 2 )
                    246: *>          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
                    247: *>          reciprocal condition numbers for the average of the selected
                    248: *>          eigenvalues.
                    249: *>          Not referenced if SENSE = 'N' or 'V'.
                    250: *> \endverbatim
                    251: *>
                    252: *> \param[out] RCONDV
                    253: *> \verbatim
                    254: *>          RCONDV is DOUBLE PRECISION array, dimension ( 2 )
                    255: *>          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
                    256: *>          reciprocal condition numbers for the selected deflating
                    257: *>          subspaces.
                    258: *>          Not referenced if SENSE = 'N' or 'E'.
                    259: *> \endverbatim
                    260: *>
                    261: *> \param[out] WORK
                    262: *> \verbatim
                    263: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    264: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    265: *> \endverbatim
                    266: *>
                    267: *> \param[in] LWORK
                    268: *> \verbatim
                    269: *>          LWORK is INTEGER
                    270: *>          The dimension of the array WORK.
                    271: *>          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
                    272: *>          LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
                    273: *>          LWORK >= max( 8*N, 6*N+16 ).
                    274: *>          Note that 2*SDIM*(N-SDIM) <= N*N/2.
                    275: *>          Note also that an error is only returned if
                    276: *>          LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
                    277: *>          this may not be large enough.
                    278: *>
                    279: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    280: *>          only calculates the bound on the optimal size of the WORK
                    281: *>          array and the minimum size of the IWORK array, returns these
                    282: *>          values as the first entries of the WORK and IWORK arrays, and
                    283: *>          no error message related to LWORK or LIWORK is issued by
                    284: *>          XERBLA.
                    285: *> \endverbatim
                    286: *>
                    287: *> \param[out] IWORK
                    288: *> \verbatim
                    289: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    290: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
                    291: *> \endverbatim
                    292: *>
                    293: *> \param[in] LIWORK
                    294: *> \verbatim
                    295: *>          LIWORK is INTEGER
                    296: *>          The dimension of the array IWORK.
                    297: *>          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
                    298: *>          LIWORK >= N+6.
                    299: *>
                    300: *>          If LIWORK = -1, then a workspace query is assumed; the
                    301: *>          routine only calculates the bound on the optimal size of the
                    302: *>          WORK array and the minimum size of the IWORK array, returns
                    303: *>          these values as the first entries of the WORK and IWORK
                    304: *>          arrays, and no error message related to LWORK or LIWORK is
                    305: *>          issued by XERBLA.
                    306: *> \endverbatim
                    307: *>
                    308: *> \param[out] BWORK
                    309: *> \verbatim
                    310: *>          BWORK is LOGICAL array, dimension (N)
                    311: *>          Not referenced if SORT = 'N'.
                    312: *> \endverbatim
                    313: *>
                    314: *> \param[out] INFO
                    315: *> \verbatim
                    316: *>          INFO is INTEGER
                    317: *>          = 0:  successful exit
                    318: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    319: *>          = 1,...,N:
                    320: *>                The QZ iteration failed.  (A,B) are not in Schur
                    321: *>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
                    322: *>                be correct for j=INFO+1,...,N.
                    323: *>          > N:  =N+1: other than QZ iteration failed in DHGEQZ
                    324: *>                =N+2: after reordering, roundoff changed values of
                    325: *>                      some complex eigenvalues so that leading
                    326: *>                      eigenvalues in the Generalized Schur form no
                    327: *>                      longer satisfy SELCTG=.TRUE.  This could also
                    328: *>                      be caused due to scaling.
                    329: *>                =N+3: reordering failed in DTGSEN.
                    330: *> \endverbatim
                    331: *
                    332: *  Authors:
                    333: *  ========
                    334: *
                    335: *> \author Univ. of Tennessee 
                    336: *> \author Univ. of California Berkeley 
                    337: *> \author Univ. of Colorado Denver 
                    338: *> \author NAG Ltd. 
                    339: *
                    340: *> \date November 2011
                    341: *
                    342: *> \ingroup doubleGEeigen
                    343: *
                    344: *> \par Further Details:
                    345: *  =====================
                    346: *>
                    347: *> \verbatim
                    348: *>
                    349: *>  An approximate (asymptotic) bound on the average absolute error of
                    350: *>  the selected eigenvalues is
                    351: *>
                    352: *>       EPS * norm((A, B)) / RCONDE( 1 ).
                    353: *>
                    354: *>  An approximate (asymptotic) bound on the maximum angular error in
                    355: *>  the computed deflating subspaces is
                    356: *>
                    357: *>       EPS * norm((A, B)) / RCONDV( 2 ).
                    358: *>
                    359: *>  See LAPACK User's Guide, section 4.11 for more information.
                    360: *> \endverbatim
                    361: *>
                    362: *  =====================================================================
1.1       bertrand  363:       SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
                    364:      $                   B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
                    365:      $                   VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
                    366:      $                   LIWORK, BWORK, INFO )
                    367: *
1.8       bertrand  368: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  369: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    370: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  371: *     November 2011
1.1       bertrand  372: *
                    373: *     .. Scalar Arguments ..
                    374:       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
                    375:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
                    376:      $                   SDIM
                    377: *     ..
                    378: *     .. Array Arguments ..
                    379:       LOGICAL            BWORK( * )
                    380:       INTEGER            IWORK( * )
                    381:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                    382:      $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
                    383:      $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
                    384:      $                   WORK( * )
                    385: *     ..
                    386: *     .. Function Arguments ..
                    387:       LOGICAL            SELCTG
                    388:       EXTERNAL           SELCTG
                    389: *     ..
                    390: *
                    391: *  =====================================================================
                    392: *
                    393: *     .. Parameters ..
                    394:       DOUBLE PRECISION   ZERO, ONE
                    395:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    396: *     ..
                    397: *     .. Local Scalars ..
                    398:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    399:      $                   LQUERY, LST2SL, WANTSB, WANTSE, WANTSN, WANTST,
                    400:      $                   WANTSV
                    401:       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
                    402:      $                   ILEFT, ILO, IP, IRIGHT, IROWS, ITAU, IWRK,
                    403:      $                   LIWMIN, LWRK, MAXWRK, MINWRK
                    404:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
                    405:      $                   PR, SAFMAX, SAFMIN, SMLNUM
                    406: *     ..
                    407: *     .. Local Arrays ..
                    408:       DOUBLE PRECISION   DIF( 2 )
                    409: *     ..
                    410: *     .. External Subroutines ..
                    411:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
                    412:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
                    413:      $                   XERBLA
                    414: *     ..
                    415: *     .. External Functions ..
                    416:       LOGICAL            LSAME
                    417:       INTEGER            ILAENV
                    418:       DOUBLE PRECISION   DLAMCH, DLANGE
                    419:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    420: *     ..
                    421: *     .. Intrinsic Functions ..
                    422:       INTRINSIC          ABS, MAX, SQRT
                    423: *     ..
                    424: *     .. Executable Statements ..
                    425: *
                    426: *     Decode the input arguments
                    427: *
                    428:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    429:          IJOBVL = 1
                    430:          ILVSL = .FALSE.
                    431:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    432:          IJOBVL = 2
                    433:          ILVSL = .TRUE.
                    434:       ELSE
                    435:          IJOBVL = -1
                    436:          ILVSL = .FALSE.
                    437:       END IF
                    438: *
                    439:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    440:          IJOBVR = 1
                    441:          ILVSR = .FALSE.
                    442:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    443:          IJOBVR = 2
                    444:          ILVSR = .TRUE.
                    445:       ELSE
                    446:          IJOBVR = -1
                    447:          ILVSR = .FALSE.
                    448:       END IF
                    449: *
                    450:       WANTST = LSAME( SORT, 'S' )
                    451:       WANTSN = LSAME( SENSE, 'N' )
                    452:       WANTSE = LSAME( SENSE, 'E' )
                    453:       WANTSV = LSAME( SENSE, 'V' )
                    454:       WANTSB = LSAME( SENSE, 'B' )
                    455:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    456:       IF( WANTSN ) THEN
                    457:          IJOB = 0
                    458:       ELSE IF( WANTSE ) THEN
                    459:          IJOB = 1
                    460:       ELSE IF( WANTSV ) THEN
                    461:          IJOB = 2
                    462:       ELSE IF( WANTSB ) THEN
                    463:          IJOB = 4
                    464:       END IF
                    465: *
                    466: *     Test the input arguments
                    467: *
                    468:       INFO = 0
                    469:       IF( IJOBVL.LE.0 ) THEN
                    470:          INFO = -1
                    471:       ELSE IF( IJOBVR.LE.0 ) THEN
                    472:          INFO = -2
                    473:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    474:          INFO = -3
                    475:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    476:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    477:          INFO = -5
                    478:       ELSE IF( N.LT.0 ) THEN
                    479:          INFO = -6
                    480:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    481:          INFO = -8
                    482:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    483:          INFO = -10
                    484:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    485:          INFO = -16
                    486:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    487:          INFO = -18
                    488:       END IF
                    489: *
                    490: *     Compute workspace
                    491: *      (Note: Comments in the code beginning "Workspace:" describe the
                    492: *       minimal amount of workspace needed at that point in the code,
                    493: *       as well as the preferred amount for good performance.
                    494: *       NB refers to the optimal block size for the immediately
                    495: *       following subroutine, as returned by ILAENV.)
                    496: *
                    497:       IF( INFO.EQ.0 ) THEN
                    498:          IF( N.GT.0) THEN
                    499:             MINWRK = MAX( 8*N, 6*N + 16 )
                    500:             MAXWRK = MINWRK - N +
                    501:      $               N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 )
                    502:             MAXWRK = MAX( MAXWRK, MINWRK - N +
                    503:      $               N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, -1 ) )
                    504:             IF( ILVSL ) THEN
                    505:                MAXWRK = MAX( MAXWRK, MINWRK - N +
                    506:      $                  N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
                    507:             END IF
                    508:             LWRK = MAXWRK
                    509:             IF( IJOB.GE.1 )
                    510:      $         LWRK = MAX( LWRK, N*N/2 )
                    511:          ELSE
                    512:             MINWRK = 1
                    513:             MAXWRK = 1
                    514:             LWRK   = 1
                    515:          END IF
                    516:          WORK( 1 ) = LWRK
                    517:          IF( WANTSN .OR. N.EQ.0 ) THEN
                    518:             LIWMIN = 1
                    519:          ELSE
                    520:             LIWMIN = N + 6
                    521:          END IF
                    522:          IWORK( 1 ) = LIWMIN
                    523: *
                    524:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    525:             INFO = -22
                    526:          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY ) THEN
                    527:             INFO = -24
                    528:          END IF
                    529:       END IF
                    530: *
                    531:       IF( INFO.NE.0 ) THEN
                    532:          CALL XERBLA( 'DGGESX', -INFO )
                    533:          RETURN
                    534:       ELSE IF (LQUERY) THEN
                    535:          RETURN
                    536:       END IF
                    537: *
                    538: *     Quick return if possible
                    539: *
                    540:       IF( N.EQ.0 ) THEN
                    541:          SDIM = 0
                    542:          RETURN
                    543:       END IF
                    544: *
                    545: *     Get machine constants
                    546: *
                    547:       EPS = DLAMCH( 'P' )
                    548:       SAFMIN = DLAMCH( 'S' )
                    549:       SAFMAX = ONE / SAFMIN
                    550:       CALL DLABAD( SAFMIN, SAFMAX )
                    551:       SMLNUM = SQRT( SAFMIN ) / EPS
                    552:       BIGNUM = ONE / SMLNUM
                    553: *
                    554: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    555: *
                    556:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    557:       ILASCL = .FALSE.
                    558:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    559:          ANRMTO = SMLNUM
                    560:          ILASCL = .TRUE.
                    561:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    562:          ANRMTO = BIGNUM
                    563:          ILASCL = .TRUE.
                    564:       END IF
                    565:       IF( ILASCL )
                    566:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    567: *
                    568: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    569: *
                    570:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    571:       ILBSCL = .FALSE.
                    572:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    573:          BNRMTO = SMLNUM
                    574:          ILBSCL = .TRUE.
                    575:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    576:          BNRMTO = BIGNUM
                    577:          ILBSCL = .TRUE.
                    578:       END IF
                    579:       IF( ILBSCL )
                    580:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    581: *
                    582: *     Permute the matrix to make it more nearly triangular
                    583: *     (Workspace: need 6*N + 2*N for permutation parameters)
                    584: *
                    585:       ILEFT = 1
                    586:       IRIGHT = N + 1
                    587:       IWRK = IRIGHT + N
                    588:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
                    589:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
                    590: *
                    591: *     Reduce B to triangular form (QR decomposition of B)
                    592: *     (Workspace: need N, prefer N*NB)
                    593: *
                    594:       IROWS = IHI + 1 - ILO
                    595:       ICOLS = N + 1 - ILO
                    596:       ITAU = IWRK
                    597:       IWRK = ITAU + IROWS
                    598:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    599:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    600: *
                    601: *     Apply the orthogonal transformation to matrix A
                    602: *     (Workspace: need N, prefer N*NB)
                    603: *
                    604:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    605:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    606:      $             LWORK+1-IWRK, IERR )
                    607: *
                    608: *     Initialize VSL
                    609: *     (Workspace: need N, prefer N*NB)
                    610: *
                    611:       IF( ILVSL ) THEN
                    612:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
                    613:          IF( IROWS.GT.1 ) THEN
                    614:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    615:      $                   VSL( ILO+1, ILO ), LDVSL )
                    616:          END IF
                    617:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    618:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    619:       END IF
                    620: *
                    621: *     Initialize VSR
                    622: *
                    623:       IF( ILVSR )
                    624:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
                    625: *
                    626: *     Reduce to generalized Hessenberg form
                    627: *     (Workspace: none needed)
                    628: *
                    629:       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    630:      $             LDVSL, VSR, LDVSR, IERR )
                    631: *
                    632:       SDIM = 0
                    633: *
                    634: *     Perform QZ algorithm, computing Schur vectors if desired
                    635: *     (Workspace: need N)
                    636: *
                    637:       IWRK = ITAU
                    638:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    639:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
                    640:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    641:       IF( IERR.NE.0 ) THEN
                    642:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    643:             INFO = IERR
                    644:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    645:             INFO = IERR - N
                    646:          ELSE
                    647:             INFO = N + 1
                    648:          END IF
                    649:          GO TO 60
                    650:       END IF
                    651: *
                    652: *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
                    653: *     condition number(s)
                    654: *     (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) )
                    655: *                 otherwise, need 8*(N+1) )
                    656: *
                    657:       IF( WANTST ) THEN
                    658: *
                    659: *        Undo scaling on eigenvalues before SELCTGing
                    660: *
                    661:          IF( ILASCL ) THEN
                    662:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
                    663:      $                   IERR )
                    664:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
                    665:      $                   IERR )
                    666:          END IF
                    667:          IF( ILBSCL )
                    668:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    669: *
                    670: *        Select eigenvalues
                    671: *
                    672:          DO 10 I = 1, N
                    673:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    674:    10    CONTINUE
                    675: *
                    676: *        Reorder eigenvalues, transform Generalized Schur vectors, and
                    677: *        compute reciprocal condition numbers
                    678: *
                    679:          CALL DTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
                    680:      $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
                    681:      $                SDIM, PL, PR, DIF, WORK( IWRK ), LWORK-IWRK+1,
                    682:      $                IWORK, LIWORK, IERR )
                    683: *
                    684:          IF( IJOB.GE.1 )
                    685:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
                    686:          IF( IERR.EQ.-22 ) THEN
                    687: *
                    688: *            not enough real workspace
                    689: *
                    690:             INFO = -22
                    691:          ELSE
                    692:             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
                    693:                RCONDE( 1 ) = PL
                    694:                RCONDE( 2 ) = PR
                    695:             END IF
                    696:             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    697:                RCONDV( 1 ) = DIF( 1 )
                    698:                RCONDV( 2 ) = DIF( 2 )
                    699:             END IF
                    700:             IF( IERR.EQ.1 )
                    701:      $         INFO = N + 3
                    702:          END IF
                    703: *
                    704:       END IF
                    705: *
                    706: *     Apply permutation to VSL and VSR
                    707: *     (Workspace: none needed)
                    708: *
                    709:       IF( ILVSL )
                    710:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
                    711:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    712: *
                    713:       IF( ILVSR )
                    714:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
                    715:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    716: *
                    717: *     Check if unscaling would cause over/underflow, if so, rescale
                    718: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
                    719: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
                    720: *
                    721:       IF( ILASCL ) THEN
                    722:          DO 20 I = 1, N
                    723:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    724:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
                    725:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
                    726:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
                    727:                   BETA( I ) = BETA( I )*WORK( 1 )
                    728:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    729:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    730:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
                    731:      $                  ( ANRMTO / ANRM ) .OR.
                    732:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
                    733:      $                   THEN
                    734:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
                    735:                   BETA( I ) = BETA( I )*WORK( 1 )
                    736:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    737:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    738:                END IF
                    739:             END IF
                    740:    20    CONTINUE
                    741:       END IF
                    742: *
                    743:       IF( ILBSCL ) THEN
                    744:          DO 30 I = 1, N
                    745:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    746:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
                    747:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
                    748:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
                    749:                   BETA( I ) = BETA( I )*WORK( 1 )
                    750:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    751:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    752:                END IF
                    753:             END IF
                    754:    30    CONTINUE
                    755:       END IF
                    756: *
                    757: *     Undo scaling
                    758: *
                    759:       IF( ILASCL ) THEN
                    760:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    761:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
                    762:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
                    763:       END IF
                    764: *
                    765:       IF( ILBSCL ) THEN
                    766:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    767:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    768:       END IF
                    769: *
                    770:       IF( WANTST ) THEN
                    771: *
                    772: *        Check if reordering is correct
                    773: *
                    774:          LASTSL = .TRUE.
                    775:          LST2SL = .TRUE.
                    776:          SDIM = 0
                    777:          IP = 0
                    778:          DO 50 I = 1, N
                    779:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    780:             IF( ALPHAI( I ).EQ.ZERO ) THEN
                    781:                IF( CURSL )
                    782:      $            SDIM = SDIM + 1
                    783:                IP = 0
                    784:                IF( CURSL .AND. .NOT.LASTSL )
                    785:      $            INFO = N + 2
                    786:             ELSE
                    787:                IF( IP.EQ.1 ) THEN
                    788: *
                    789: *                 Last eigenvalue of conjugate pair
                    790: *
                    791:                   CURSL = CURSL .OR. LASTSL
                    792:                   LASTSL = CURSL
                    793:                   IF( CURSL )
                    794:      $               SDIM = SDIM + 2
                    795:                   IP = -1
                    796:                   IF( CURSL .AND. .NOT.LST2SL )
                    797:      $               INFO = N + 2
                    798:                ELSE
                    799: *
                    800: *                 First eigenvalue of conjugate pair
                    801: *
                    802:                   IP = 1
                    803:                END IF
                    804:             END IF
                    805:             LST2SL = LASTSL
                    806:             LASTSL = CURSL
                    807:    50    CONTINUE
                    808: *
                    809:       END IF
                    810: *
                    811:    60 CONTINUE
                    812: *
                    813:       WORK( 1 ) = MAXWRK
                    814:       IWORK( 1 ) = LIWMIN
                    815: *
                    816:       RETURN
                    817: *
                    818: *     End of DGGESX
                    819: *
                    820:       END

CVSweb interface <joel.bertrand@systella.fr>