Annotation of rpl/lapack/lapack/dggesx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
        !             2:      $                   B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
        !             3:      $                   VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
        !             4:      $                   LIWORK, BWORK, INFO )
        !             5: *
        !             6: *  -- LAPACK driver routine (version 3.2.1)                           --
        !             7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             9: *  -- April 2009                                                      --
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
        !            13:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
        !            14:      $                   SDIM
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       LOGICAL            BWORK( * )
        !            18:       INTEGER            IWORK( * )
        !            19:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !            20:      $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
        !            21:      $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
        !            22:      $                   WORK( * )
        !            23: *     ..
        !            24: *     .. Function Arguments ..
        !            25:       LOGICAL            SELCTG
        !            26:       EXTERNAL           SELCTG
        !            27: *     ..
        !            28: *
        !            29: *  Purpose
        !            30: *  =======
        !            31: *
        !            32: *  DGGESX computes for a pair of N-by-N real nonsymmetric matrices
        !            33: *  (A,B), the generalized eigenvalues, the real Schur form (S,T), and,
        !            34: *  optionally, the left and/or right matrices of Schur vectors (VSL and
        !            35: *  VSR).  This gives the generalized Schur factorization
        !            36: *
        !            37: *       (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
        !            38: *
        !            39: *  Optionally, it also orders the eigenvalues so that a selected cluster
        !            40: *  of eigenvalues appears in the leading diagonal blocks of the upper
        !            41: *  quasi-triangular matrix S and the upper triangular matrix T; computes
        !            42: *  a reciprocal condition number for the average of the selected
        !            43: *  eigenvalues (RCONDE); and computes a reciprocal condition number for
        !            44: *  the right and left deflating subspaces corresponding to the selected
        !            45: *  eigenvalues (RCONDV). The leading columns of VSL and VSR then form
        !            46: *  an orthonormal basis for the corresponding left and right eigenspaces
        !            47: *  (deflating subspaces).
        !            48: *
        !            49: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
        !            50: *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
        !            51: *  usually represented as the pair (alpha,beta), as there is a
        !            52: *  reasonable interpretation for beta=0 or for both being zero.
        !            53: *
        !            54: *  A pair of matrices (S,T) is in generalized real Schur form if T is
        !            55: *  upper triangular with non-negative diagonal and S is block upper
        !            56: *  triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
        !            57: *  to real generalized eigenvalues, while 2-by-2 blocks of S will be
        !            58: *  "standardized" by making the corresponding elements of T have the
        !            59: *  form:
        !            60: *          [  a  0  ]
        !            61: *          [  0  b  ]
        !            62: *
        !            63: *  and the pair of corresponding 2-by-2 blocks in S and T will have a
        !            64: *  complex conjugate pair of generalized eigenvalues.
        !            65: *
        !            66: *
        !            67: *  Arguments
        !            68: *  =========
        !            69: *
        !            70: *  JOBVSL  (input) CHARACTER*1
        !            71: *          = 'N':  do not compute the left Schur vectors;
        !            72: *          = 'V':  compute the left Schur vectors.
        !            73: *
        !            74: *  JOBVSR  (input) CHARACTER*1
        !            75: *          = 'N':  do not compute the right Schur vectors;
        !            76: *          = 'V':  compute the right Schur vectors.
        !            77: *
        !            78: *  SORT    (input) CHARACTER*1
        !            79: *          Specifies whether or not to order the eigenvalues on the
        !            80: *          diagonal of the generalized Schur form.
        !            81: *          = 'N':  Eigenvalues are not ordered;
        !            82: *          = 'S':  Eigenvalues are ordered (see SELCTG).
        !            83: *
        !            84: *  SELCTG  (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
        !            85: *          SELCTG must be declared EXTERNAL in the calling subroutine.
        !            86: *          If SORT = 'N', SELCTG is not referenced.
        !            87: *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
        !            88: *          to the top left of the Schur form.
        !            89: *          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
        !            90: *          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
        !            91: *          one of a complex conjugate pair of eigenvalues is selected,
        !            92: *          then both complex eigenvalues are selected.
        !            93: *          Note that a selected complex eigenvalue may no longer satisfy
        !            94: *          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
        !            95: *          since ordering may change the value of complex eigenvalues
        !            96: *          (especially if the eigenvalue is ill-conditioned), in this
        !            97: *          case INFO is set to N+3.
        !            98: *
        !            99: *  SENSE   (input) CHARACTER*1
        !           100: *          Determines which reciprocal condition numbers are computed.
        !           101: *          = 'N' : None are computed;
        !           102: *          = 'E' : Computed for average of selected eigenvalues only;
        !           103: *          = 'V' : Computed for selected deflating subspaces only;
        !           104: *          = 'B' : Computed for both.
        !           105: *          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
        !           106: *
        !           107: *  N       (input) INTEGER
        !           108: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
        !           109: *
        !           110: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
        !           111: *          On entry, the first of the pair of matrices.
        !           112: *          On exit, A has been overwritten by its generalized Schur
        !           113: *          form S.
        !           114: *
        !           115: *  LDA     (input) INTEGER
        !           116: *          The leading dimension of A.  LDA >= max(1,N).
        !           117: *
        !           118: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
        !           119: *          On entry, the second of the pair of matrices.
        !           120: *          On exit, B has been overwritten by its generalized Schur
        !           121: *          form T.
        !           122: *
        !           123: *  LDB     (input) INTEGER
        !           124: *          The leading dimension of B.  LDB >= max(1,N).
        !           125: *
        !           126: *  SDIM    (output) INTEGER
        !           127: *          If SORT = 'N', SDIM = 0.
        !           128: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
        !           129: *          for which SELCTG is true.  (Complex conjugate pairs for which
        !           130: *          SELCTG is true for either eigenvalue count as 2.)
        !           131: *
        !           132: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
        !           133: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
        !           134: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
        !           135: *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
        !           136: *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
        !           137: *          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
        !           138: *          form (S,T) that would result if the 2-by-2 diagonal blocks of
        !           139: *          the real Schur form of (A,B) were further reduced to
        !           140: *          triangular form using 2-by-2 complex unitary transformations.
        !           141: *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
        !           142: *          positive, then the j-th and (j+1)-st eigenvalues are a
        !           143: *          complex conjugate pair, with ALPHAI(j+1) negative.
        !           144: *
        !           145: *          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
        !           146: *          may easily over- or underflow, and BETA(j) may even be zero.
        !           147: *          Thus, the user should avoid naively computing the ratio.
        !           148: *          However, ALPHAR and ALPHAI will be always less than and
        !           149: *          usually comparable with norm(A) in magnitude, and BETA always
        !           150: *          less than and usually comparable with norm(B).
        !           151: *
        !           152: *  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
        !           153: *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
        !           154: *          Not referenced if JOBVSL = 'N'.
        !           155: *
        !           156: *  LDVSL   (input) INTEGER
        !           157: *          The leading dimension of the matrix VSL. LDVSL >=1, and
        !           158: *          if JOBVSL = 'V', LDVSL >= N.
        !           159: *
        !           160: *  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
        !           161: *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
        !           162: *          Not referenced if JOBVSR = 'N'.
        !           163: *
        !           164: *  LDVSR   (input) INTEGER
        !           165: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
        !           166: *          if JOBVSR = 'V', LDVSR >= N.
        !           167: *
        !           168: *  RCONDE  (output) DOUBLE PRECISION array, dimension ( 2 )
        !           169: *          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
        !           170: *          reciprocal condition numbers for the average of the selected
        !           171: *          eigenvalues.
        !           172: *          Not referenced if SENSE = 'N' or 'V'.
        !           173: *
        !           174: *  RCONDV  (output) DOUBLE PRECISION array, dimension ( 2 )
        !           175: *          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
        !           176: *          reciprocal condition numbers for the selected deflating
        !           177: *          subspaces.
        !           178: *          Not referenced if SENSE = 'N' or 'E'.
        !           179: *
        !           180: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           181: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           182: *
        !           183: *  LWORK   (input) INTEGER
        !           184: *          The dimension of the array WORK.
        !           185: *          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
        !           186: *          LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
        !           187: *          LWORK >= max( 8*N, 6*N+16 ).
        !           188: *          Note that 2*SDIM*(N-SDIM) <= N*N/2.
        !           189: *          Note also that an error is only returned if
        !           190: *          LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
        !           191: *          this may not be large enough.
        !           192: *
        !           193: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           194: *          only calculates the bound on the optimal size of the WORK
        !           195: *          array and the minimum size of the IWORK array, returns these
        !           196: *          values as the first entries of the WORK and IWORK arrays, and
        !           197: *          no error message related to LWORK or LIWORK is issued by
        !           198: *          XERBLA.
        !           199: *
        !           200: *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
        !           201: *          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
        !           202: *
        !           203: *  LIWORK  (input) INTEGER
        !           204: *          The dimension of the array IWORK.
        !           205: *          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
        !           206: *          LIWORK >= N+6.
        !           207: *
        !           208: *          If LIWORK = -1, then a workspace query is assumed; the
        !           209: *          routine only calculates the bound on the optimal size of the
        !           210: *          WORK array and the minimum size of the IWORK array, returns
        !           211: *          these values as the first entries of the WORK and IWORK
        !           212: *          arrays, and no error message related to LWORK or LIWORK is
        !           213: *          issued by XERBLA.
        !           214: *
        !           215: *  BWORK   (workspace) LOGICAL array, dimension (N)
        !           216: *          Not referenced if SORT = 'N'.
        !           217: *
        !           218: *  INFO    (output) INTEGER
        !           219: *          = 0:  successful exit
        !           220: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           221: *          = 1,...,N:
        !           222: *                The QZ iteration failed.  (A,B) are not in Schur
        !           223: *                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
        !           224: *                be correct for j=INFO+1,...,N.
        !           225: *          > N:  =N+1: other than QZ iteration failed in DHGEQZ
        !           226: *                =N+2: after reordering, roundoff changed values of
        !           227: *                      some complex eigenvalues so that leading
        !           228: *                      eigenvalues in the Generalized Schur form no
        !           229: *                      longer satisfy SELCTG=.TRUE.  This could also
        !           230: *                      be caused due to scaling.
        !           231: *                =N+3: reordering failed in DTGSEN.
        !           232: *
        !           233: *  Further Details
        !           234: *  ===============
        !           235: *
        !           236: *  An approximate (asymptotic) bound on the average absolute error of
        !           237: *  the selected eigenvalues is
        !           238: *
        !           239: *       EPS * norm((A, B)) / RCONDE( 1 ).
        !           240: *
        !           241: *  An approximate (asymptotic) bound on the maximum angular error in
        !           242: *  the computed deflating subspaces is
        !           243: *
        !           244: *       EPS * norm((A, B)) / RCONDV( 2 ).
        !           245: *
        !           246: *  See LAPACK User's Guide, section 4.11 for more information.
        !           247: *
        !           248: *  =====================================================================
        !           249: *
        !           250: *     .. Parameters ..
        !           251:       DOUBLE PRECISION   ZERO, ONE
        !           252:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           253: *     ..
        !           254: *     .. Local Scalars ..
        !           255:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
        !           256:      $                   LQUERY, LST2SL, WANTSB, WANTSE, WANTSN, WANTST,
        !           257:      $                   WANTSV
        !           258:       INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
        !           259:      $                   ILEFT, ILO, IP, IRIGHT, IROWS, ITAU, IWRK,
        !           260:      $                   LIWMIN, LWRK, MAXWRK, MINWRK
        !           261:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
        !           262:      $                   PR, SAFMAX, SAFMIN, SMLNUM
        !           263: *     ..
        !           264: *     .. Local Arrays ..
        !           265:       DOUBLE PRECISION   DIF( 2 )
        !           266: *     ..
        !           267: *     .. External Subroutines ..
        !           268:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
        !           269:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
        !           270:      $                   XERBLA
        !           271: *     ..
        !           272: *     .. External Functions ..
        !           273:       LOGICAL            LSAME
        !           274:       INTEGER            ILAENV
        !           275:       DOUBLE PRECISION   DLAMCH, DLANGE
        !           276:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
        !           277: *     ..
        !           278: *     .. Intrinsic Functions ..
        !           279:       INTRINSIC          ABS, MAX, SQRT
        !           280: *     ..
        !           281: *     .. Executable Statements ..
        !           282: *
        !           283: *     Decode the input arguments
        !           284: *
        !           285:       IF( LSAME( JOBVSL, 'N' ) ) THEN
        !           286:          IJOBVL = 1
        !           287:          ILVSL = .FALSE.
        !           288:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
        !           289:          IJOBVL = 2
        !           290:          ILVSL = .TRUE.
        !           291:       ELSE
        !           292:          IJOBVL = -1
        !           293:          ILVSL = .FALSE.
        !           294:       END IF
        !           295: *
        !           296:       IF( LSAME( JOBVSR, 'N' ) ) THEN
        !           297:          IJOBVR = 1
        !           298:          ILVSR = .FALSE.
        !           299:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
        !           300:          IJOBVR = 2
        !           301:          ILVSR = .TRUE.
        !           302:       ELSE
        !           303:          IJOBVR = -1
        !           304:          ILVSR = .FALSE.
        !           305:       END IF
        !           306: *
        !           307:       WANTST = LSAME( SORT, 'S' )
        !           308:       WANTSN = LSAME( SENSE, 'N' )
        !           309:       WANTSE = LSAME( SENSE, 'E' )
        !           310:       WANTSV = LSAME( SENSE, 'V' )
        !           311:       WANTSB = LSAME( SENSE, 'B' )
        !           312:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           313:       IF( WANTSN ) THEN
        !           314:          IJOB = 0
        !           315:       ELSE IF( WANTSE ) THEN
        !           316:          IJOB = 1
        !           317:       ELSE IF( WANTSV ) THEN
        !           318:          IJOB = 2
        !           319:       ELSE IF( WANTSB ) THEN
        !           320:          IJOB = 4
        !           321:       END IF
        !           322: *
        !           323: *     Test the input arguments
        !           324: *
        !           325:       INFO = 0
        !           326:       IF( IJOBVL.LE.0 ) THEN
        !           327:          INFO = -1
        !           328:       ELSE IF( IJOBVR.LE.0 ) THEN
        !           329:          INFO = -2
        !           330:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
        !           331:          INFO = -3
        !           332:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
        !           333:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
        !           334:          INFO = -5
        !           335:       ELSE IF( N.LT.0 ) THEN
        !           336:          INFO = -6
        !           337:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           338:          INFO = -8
        !           339:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           340:          INFO = -10
        !           341:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
        !           342:          INFO = -16
        !           343:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
        !           344:          INFO = -18
        !           345:       END IF
        !           346: *
        !           347: *     Compute workspace
        !           348: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           349: *       minimal amount of workspace needed at that point in the code,
        !           350: *       as well as the preferred amount for good performance.
        !           351: *       NB refers to the optimal block size for the immediately
        !           352: *       following subroutine, as returned by ILAENV.)
        !           353: *
        !           354:       IF( INFO.EQ.0 ) THEN
        !           355:          IF( N.GT.0) THEN
        !           356:             MINWRK = MAX( 8*N, 6*N + 16 )
        !           357:             MAXWRK = MINWRK - N +
        !           358:      $               N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 )
        !           359:             MAXWRK = MAX( MAXWRK, MINWRK - N +
        !           360:      $               N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, -1 ) )
        !           361:             IF( ILVSL ) THEN
        !           362:                MAXWRK = MAX( MAXWRK, MINWRK - N +
        !           363:      $                  N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
        !           364:             END IF
        !           365:             LWRK = MAXWRK
        !           366:             IF( IJOB.GE.1 )
        !           367:      $         LWRK = MAX( LWRK, N*N/2 )
        !           368:          ELSE
        !           369:             MINWRK = 1
        !           370:             MAXWRK = 1
        !           371:             LWRK   = 1
        !           372:          END IF
        !           373:          WORK( 1 ) = LWRK
        !           374:          IF( WANTSN .OR. N.EQ.0 ) THEN
        !           375:             LIWMIN = 1
        !           376:          ELSE
        !           377:             LIWMIN = N + 6
        !           378:          END IF
        !           379:          IWORK( 1 ) = LIWMIN
        !           380: *
        !           381:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           382:             INFO = -22
        !           383:          ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY ) THEN
        !           384:             INFO = -24
        !           385:          END IF
        !           386:       END IF
        !           387: *
        !           388:       IF( INFO.NE.0 ) THEN
        !           389:          CALL XERBLA( 'DGGESX', -INFO )
        !           390:          RETURN
        !           391:       ELSE IF (LQUERY) THEN
        !           392:          RETURN
        !           393:       END IF
        !           394: *
        !           395: *     Quick return if possible
        !           396: *
        !           397:       IF( N.EQ.0 ) THEN
        !           398:          SDIM = 0
        !           399:          RETURN
        !           400:       END IF
        !           401: *
        !           402: *     Get machine constants
        !           403: *
        !           404:       EPS = DLAMCH( 'P' )
        !           405:       SAFMIN = DLAMCH( 'S' )
        !           406:       SAFMAX = ONE / SAFMIN
        !           407:       CALL DLABAD( SAFMIN, SAFMAX )
        !           408:       SMLNUM = SQRT( SAFMIN ) / EPS
        !           409:       BIGNUM = ONE / SMLNUM
        !           410: *
        !           411: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           412: *
        !           413:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
        !           414:       ILASCL = .FALSE.
        !           415:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           416:          ANRMTO = SMLNUM
        !           417:          ILASCL = .TRUE.
        !           418:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           419:          ANRMTO = BIGNUM
        !           420:          ILASCL = .TRUE.
        !           421:       END IF
        !           422:       IF( ILASCL )
        !           423:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
        !           424: *
        !           425: *     Scale B if max element outside range [SMLNUM,BIGNUM]
        !           426: *
        !           427:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
        !           428:       ILBSCL = .FALSE.
        !           429:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           430:          BNRMTO = SMLNUM
        !           431:          ILBSCL = .TRUE.
        !           432:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           433:          BNRMTO = BIGNUM
        !           434:          ILBSCL = .TRUE.
        !           435:       END IF
        !           436:       IF( ILBSCL )
        !           437:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
        !           438: *
        !           439: *     Permute the matrix to make it more nearly triangular
        !           440: *     (Workspace: need 6*N + 2*N for permutation parameters)
        !           441: *
        !           442:       ILEFT = 1
        !           443:       IRIGHT = N + 1
        !           444:       IWRK = IRIGHT + N
        !           445:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
        !           446:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
        !           447: *
        !           448: *     Reduce B to triangular form (QR decomposition of B)
        !           449: *     (Workspace: need N, prefer N*NB)
        !           450: *
        !           451:       IROWS = IHI + 1 - ILO
        !           452:       ICOLS = N + 1 - ILO
        !           453:       ITAU = IWRK
        !           454:       IWRK = ITAU + IROWS
        !           455:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
        !           456:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           457: *
        !           458: *     Apply the orthogonal transformation to matrix A
        !           459: *     (Workspace: need N, prefer N*NB)
        !           460: *
        !           461:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
        !           462:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
        !           463:      $             LWORK+1-IWRK, IERR )
        !           464: *
        !           465: *     Initialize VSL
        !           466: *     (Workspace: need N, prefer N*NB)
        !           467: *
        !           468:       IF( ILVSL ) THEN
        !           469:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
        !           470:          IF( IROWS.GT.1 ) THEN
        !           471:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
        !           472:      $                   VSL( ILO+1, ILO ), LDVSL )
        !           473:          END IF
        !           474:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
        !           475:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           476:       END IF
        !           477: *
        !           478: *     Initialize VSR
        !           479: *
        !           480:       IF( ILVSR )
        !           481:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
        !           482: *
        !           483: *     Reduce to generalized Hessenberg form
        !           484: *     (Workspace: none needed)
        !           485: *
        !           486:       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
        !           487:      $             LDVSL, VSR, LDVSR, IERR )
        !           488: *
        !           489:       SDIM = 0
        !           490: *
        !           491: *     Perform QZ algorithm, computing Schur vectors if desired
        !           492: *     (Workspace: need N)
        !           493: *
        !           494:       IWRK = ITAU
        !           495:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
        !           496:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
        !           497:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           498:       IF( IERR.NE.0 ) THEN
        !           499:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
        !           500:             INFO = IERR
        !           501:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
        !           502:             INFO = IERR - N
        !           503:          ELSE
        !           504:             INFO = N + 1
        !           505:          END IF
        !           506:          GO TO 60
        !           507:       END IF
        !           508: *
        !           509: *     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
        !           510: *     condition number(s)
        !           511: *     (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) )
        !           512: *                 otherwise, need 8*(N+1) )
        !           513: *
        !           514:       IF( WANTST ) THEN
        !           515: *
        !           516: *        Undo scaling on eigenvalues before SELCTGing
        !           517: *
        !           518:          IF( ILASCL ) THEN
        !           519:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
        !           520:      $                   IERR )
        !           521:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
        !           522:      $                   IERR )
        !           523:          END IF
        !           524:          IF( ILBSCL )
        !           525:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           526: *
        !           527: *        Select eigenvalues
        !           528: *
        !           529:          DO 10 I = 1, N
        !           530:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
        !           531:    10    CONTINUE
        !           532: *
        !           533: *        Reorder eigenvalues, transform Generalized Schur vectors, and
        !           534: *        compute reciprocal condition numbers
        !           535: *
        !           536:          CALL DTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
        !           537:      $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
        !           538:      $                SDIM, PL, PR, DIF, WORK( IWRK ), LWORK-IWRK+1,
        !           539:      $                IWORK, LIWORK, IERR )
        !           540: *
        !           541:          IF( IJOB.GE.1 )
        !           542:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
        !           543:          IF( IERR.EQ.-22 ) THEN
        !           544: *
        !           545: *            not enough real workspace
        !           546: *
        !           547:             INFO = -22
        !           548:          ELSE
        !           549:             IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
        !           550:                RCONDE( 1 ) = PL
        !           551:                RCONDE( 2 ) = PR
        !           552:             END IF
        !           553:             IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
        !           554:                RCONDV( 1 ) = DIF( 1 )
        !           555:                RCONDV( 2 ) = DIF( 2 )
        !           556:             END IF
        !           557:             IF( IERR.EQ.1 )
        !           558:      $         INFO = N + 3
        !           559:          END IF
        !           560: *
        !           561:       END IF
        !           562: *
        !           563: *     Apply permutation to VSL and VSR
        !           564: *     (Workspace: none needed)
        !           565: *
        !           566:       IF( ILVSL )
        !           567:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
        !           568:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
        !           569: *
        !           570:       IF( ILVSR )
        !           571:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
        !           572:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
        !           573: *
        !           574: *     Check if unscaling would cause over/underflow, if so, rescale
        !           575: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
        !           576: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
        !           577: *
        !           578:       IF( ILASCL ) THEN
        !           579:          DO 20 I = 1, N
        !           580:             IF( ALPHAI( I ).NE.ZERO ) THEN
        !           581:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
        !           582:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
        !           583:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
        !           584:                   BETA( I ) = BETA( I )*WORK( 1 )
        !           585:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
        !           586:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
        !           587:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
        !           588:      $                  ( ANRMTO / ANRM ) .OR.
        !           589:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
        !           590:      $                   THEN
        !           591:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
        !           592:                   BETA( I ) = BETA( I )*WORK( 1 )
        !           593:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
        !           594:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
        !           595:                END IF
        !           596:             END IF
        !           597:    20    CONTINUE
        !           598:       END IF
        !           599: *
        !           600:       IF( ILBSCL ) THEN
        !           601:          DO 30 I = 1, N
        !           602:             IF( ALPHAI( I ).NE.ZERO ) THEN
        !           603:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
        !           604:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
        !           605:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
        !           606:                   BETA( I ) = BETA( I )*WORK( 1 )
        !           607:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
        !           608:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
        !           609:                END IF
        !           610:             END IF
        !           611:    30    CONTINUE
        !           612:       END IF
        !           613: *
        !           614: *     Undo scaling
        !           615: *
        !           616:       IF( ILASCL ) THEN
        !           617:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
        !           618:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
        !           619:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
        !           620:       END IF
        !           621: *
        !           622:       IF( ILBSCL ) THEN
        !           623:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
        !           624:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           625:       END IF
        !           626: *
        !           627:       IF( WANTST ) THEN
        !           628: *
        !           629: *        Check if reordering is correct
        !           630: *
        !           631:          LASTSL = .TRUE.
        !           632:          LST2SL = .TRUE.
        !           633:          SDIM = 0
        !           634:          IP = 0
        !           635:          DO 50 I = 1, N
        !           636:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
        !           637:             IF( ALPHAI( I ).EQ.ZERO ) THEN
        !           638:                IF( CURSL )
        !           639:      $            SDIM = SDIM + 1
        !           640:                IP = 0
        !           641:                IF( CURSL .AND. .NOT.LASTSL )
        !           642:      $            INFO = N + 2
        !           643:             ELSE
        !           644:                IF( IP.EQ.1 ) THEN
        !           645: *
        !           646: *                 Last eigenvalue of conjugate pair
        !           647: *
        !           648:                   CURSL = CURSL .OR. LASTSL
        !           649:                   LASTSL = CURSL
        !           650:                   IF( CURSL )
        !           651:      $               SDIM = SDIM + 2
        !           652:                   IP = -1
        !           653:                   IF( CURSL .AND. .NOT.LST2SL )
        !           654:      $               INFO = N + 2
        !           655:                ELSE
        !           656: *
        !           657: *                 First eigenvalue of conjugate pair
        !           658: *
        !           659:                   IP = 1
        !           660:                END IF
        !           661:             END IF
        !           662:             LST2SL = LASTSL
        !           663:             LASTSL = CURSL
        !           664:    50    CONTINUE
        !           665: *
        !           666:       END IF
        !           667: *
        !           668:    60 CONTINUE
        !           669: *
        !           670:       WORK( 1 ) = MAXWRK
        !           671:       IWORK( 1 ) = LIWMIN
        !           672: *
        !           673:       RETURN
        !           674: *
        !           675: *     End of DGGESX
        !           676: *
        !           677:       END

CVSweb interface <joel.bertrand@systella.fr>