File:  [local] / rpl / lapack / lapack / dgges3.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:06:18 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief <b> DGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices (blocked algorithm)</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGGES3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgges3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgges3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgges3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
   22: *                          SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
   23: *                          LDVSR, WORK, LWORK, BWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBVSL, JOBVSR, SORT
   27: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       LOGICAL            BWORK( * )
   31: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   32: *      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
   33: *      $                   VSR( LDVSR, * ), WORK( * )
   34: *       ..
   35: *       .. Function Arguments ..
   36: *       LOGICAL            SELCTG
   37: *       EXTERNAL           SELCTG
   38: *       ..
   39: *
   40: *
   41: *> \par Purpose:
   42: *  =============
   43: *>
   44: *> \verbatim
   45: *>
   46: *> DGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B),
   47: *> the generalized eigenvalues, the generalized real Schur form (S,T),
   48: *> optionally, the left and/or right matrices of Schur vectors (VSL and
   49: *> VSR). This gives the generalized Schur factorization
   50: *>
   51: *>          (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
   52: *>
   53: *> Optionally, it also orders the eigenvalues so that a selected cluster
   54: *> of eigenvalues appears in the leading diagonal blocks of the upper
   55: *> quasi-triangular matrix S and the upper triangular matrix T.The
   56: *> leading columns of VSL and VSR then form an orthonormal basis for the
   57: *> corresponding left and right eigenspaces (deflating subspaces).
   58: *>
   59: *> (If only the generalized eigenvalues are needed, use the driver
   60: *> DGGEV instead, which is faster.)
   61: *>
   62: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
   63: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
   64: *> usually represented as the pair (alpha,beta), as there is a
   65: *> reasonable interpretation for beta=0 or both being zero.
   66: *>
   67: *> A pair of matrices (S,T) is in generalized real Schur form if T is
   68: *> upper triangular with non-negative diagonal and S is block upper
   69: *> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
   70: *> to real generalized eigenvalues, while 2-by-2 blocks of S will be
   71: *> "standardized" by making the corresponding elements of T have the
   72: *> form:
   73: *>         [  a  0  ]
   74: *>         [  0  b  ]
   75: *>
   76: *> and the pair of corresponding 2-by-2 blocks in S and T will have a
   77: *> complex conjugate pair of generalized eigenvalues.
   78: *>
   79: *> \endverbatim
   80: *
   81: *  Arguments:
   82: *  ==========
   83: *
   84: *> \param[in] JOBVSL
   85: *> \verbatim
   86: *>          JOBVSL is CHARACTER*1
   87: *>          = 'N':  do not compute the left Schur vectors;
   88: *>          = 'V':  compute the left Schur vectors.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] JOBVSR
   92: *> \verbatim
   93: *>          JOBVSR is CHARACTER*1
   94: *>          = 'N':  do not compute the right Schur vectors;
   95: *>          = 'V':  compute the right Schur vectors.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] SORT
   99: *> \verbatim
  100: *>          SORT is CHARACTER*1
  101: *>          Specifies whether or not to order the eigenvalues on the
  102: *>          diagonal of the generalized Schur form.
  103: *>          = 'N':  Eigenvalues are not ordered;
  104: *>          = 'S':  Eigenvalues are ordered (see SELCTG);
  105: *> \endverbatim
  106: *>
  107: *> \param[in] SELCTG
  108: *> \verbatim
  109: *>          SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments
  110: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
  111: *>          If SORT = 'N', SELCTG is not referenced.
  112: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
  113: *>          to the top left of the Schur form.
  114: *>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
  115: *>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
  116: *>          one of a complex conjugate pair of eigenvalues is selected,
  117: *>          then both complex eigenvalues are selected.
  118: *>
  119: *>          Note that in the ill-conditioned case, a selected complex
  120: *>          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
  121: *>          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
  122: *>          in this case.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] N
  126: *> \verbatim
  127: *>          N is INTEGER
  128: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
  129: *> \endverbatim
  130: *>
  131: *> \param[in,out] A
  132: *> \verbatim
  133: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
  134: *>          On entry, the first of the pair of matrices.
  135: *>          On exit, A has been overwritten by its generalized Schur
  136: *>          form S.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LDA
  140: *> \verbatim
  141: *>          LDA is INTEGER
  142: *>          The leading dimension of A.  LDA >= max(1,N).
  143: *> \endverbatim
  144: *>
  145: *> \param[in,out] B
  146: *> \verbatim
  147: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
  148: *>          On entry, the second of the pair of matrices.
  149: *>          On exit, B has been overwritten by its generalized Schur
  150: *>          form T.
  151: *> \endverbatim
  152: *>
  153: *> \param[in] LDB
  154: *> \verbatim
  155: *>          LDB is INTEGER
  156: *>          The leading dimension of B.  LDB >= max(1,N).
  157: *> \endverbatim
  158: *>
  159: *> \param[out] SDIM
  160: *> \verbatim
  161: *>          SDIM is INTEGER
  162: *>          If SORT = 'N', SDIM = 0.
  163: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  164: *>          for which SELCTG is true.  (Complex conjugate pairs for which
  165: *>          SELCTG is true for either eigenvalue count as 2.)
  166: *> \endverbatim
  167: *>
  168: *> \param[out] ALPHAR
  169: *> \verbatim
  170: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
  171: *> \endverbatim
  172: *>
  173: *> \param[out] ALPHAI
  174: *> \verbatim
  175: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
  176: *> \endverbatim
  177: *>
  178: *> \param[out] BETA
  179: *> \verbatim
  180: *>          BETA is DOUBLE PRECISION array, dimension (N)
  181: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  182: *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
  183: *>          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
  184: *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
  185: *>          the real Schur form of (A,B) were further reduced to
  186: *>          triangular form using 2-by-2 complex unitary transformations.
  187: *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
  188: *>          positive, then the j-th and (j+1)-st eigenvalues are a
  189: *>          complex conjugate pair, with ALPHAI(j+1) negative.
  190: *>
  191: *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
  192: *>          may easily over- or underflow, and BETA(j) may even be zero.
  193: *>          Thus, the user should avoid naively computing the ratio.
  194: *>          However, ALPHAR and ALPHAI will be always less than and
  195: *>          usually comparable with norm(A) in magnitude, and BETA always
  196: *>          less than and usually comparable with norm(B).
  197: *> \endverbatim
  198: *>
  199: *> \param[out] VSL
  200: *> \verbatim
  201: *>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
  202: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
  203: *>          Not referenced if JOBVSL = 'N'.
  204: *> \endverbatim
  205: *>
  206: *> \param[in] LDVSL
  207: *> \verbatim
  208: *>          LDVSL is INTEGER
  209: *>          The leading dimension of the matrix VSL. LDVSL >=1, and
  210: *>          if JOBVSL = 'V', LDVSL >= N.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] VSR
  214: *> \verbatim
  215: *>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
  216: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
  217: *>          Not referenced if JOBVSR = 'N'.
  218: *> \endverbatim
  219: *>
  220: *> \param[in] LDVSR
  221: *> \verbatim
  222: *>          LDVSR is INTEGER
  223: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
  224: *>          if JOBVSR = 'V', LDVSR >= N.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  230: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  231: *> \endverbatim
  232: *>
  233: *> \param[in] LWORK
  234: *> \verbatim
  235: *>          LWORK is INTEGER
  236: *>          The dimension of the array WORK.
  237: *>
  238: *>          If LWORK = -1, then a workspace query is assumed; the routine
  239: *>          only calculates the optimal size of the WORK array, returns
  240: *>          this value as the first entry of the WORK array, and no error
  241: *>          message related to LWORK is issued by XERBLA.
  242: *> \endverbatim
  243: *>
  244: *> \param[out] BWORK
  245: *> \verbatim
  246: *>          BWORK is LOGICAL array, dimension (N)
  247: *>          Not referenced if SORT = 'N'.
  248: *> \endverbatim
  249: *>
  250: *> \param[out] INFO
  251: *> \verbatim
  252: *>          INFO is INTEGER
  253: *>          = 0:  successful exit
  254: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  255: *>          = 1,...,N:
  256: *>                The QZ iteration failed.  (A,B) are not in Schur
  257: *>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
  258: *>                be correct for j=INFO+1,...,N.
  259: *>          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
  260: *>                =N+2: after reordering, roundoff changed values of
  261: *>                      some complex eigenvalues so that leading
  262: *>                      eigenvalues in the Generalized Schur form no
  263: *>                      longer satisfy SELCTG=.TRUE.  This could also
  264: *>                      be caused due to scaling.
  265: *>                =N+3: reordering failed in DTGSEN.
  266: *> \endverbatim
  267: *
  268: *  Authors:
  269: *  ========
  270: *
  271: *> \author Univ. of Tennessee
  272: *> \author Univ. of California Berkeley
  273: *> \author Univ. of Colorado Denver
  274: *> \author NAG Ltd.
  275: *
  276: *> \date January 2015
  277: *
  278: *> \ingroup doubleGEeigen
  279: *
  280: *  =====================================================================
  281:       SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
  282:      $                   LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
  283:      $                   VSR, LDVSR, WORK, LWORK, BWORK, INFO )
  284: *
  285: *  -- LAPACK driver routine (version 3.6.0) --
  286: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  287: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  288: *     January 2015
  289: *
  290: *     .. Scalar Arguments ..
  291:       CHARACTER          JOBVSL, JOBVSR, SORT
  292:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
  293: *     ..
  294: *     .. Array Arguments ..
  295:       LOGICAL            BWORK( * )
  296:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  297:      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
  298:      $                   VSR( LDVSR, * ), WORK( * )
  299: *     ..
  300: *     .. Function Arguments ..
  301:       LOGICAL            SELCTG
  302:       EXTERNAL           SELCTG
  303: *     ..
  304: *
  305: *  =====================================================================
  306: *
  307: *     .. Parameters ..
  308:       DOUBLE PRECISION   ZERO, ONE
  309:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  310: *     ..
  311: *     .. Local Scalars ..
  312:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
  313:      $                   LQUERY, LST2SL, WANTST
  314:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
  315:      $                   ILO, IP, IRIGHT, IROWS, ITAU, IWRK, LWKOPT
  316:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
  317:      $                   PVSR, SAFMAX, SAFMIN, SMLNUM
  318: *     ..
  319: *     .. Local Arrays ..
  320:       INTEGER            IDUM( 1 )
  321:       DOUBLE PRECISION   DIF( 2 )
  322: *     ..
  323: *     .. External Subroutines ..
  324:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHD3, DHGEQZ, DLABAD,
  325:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
  326:      $                   XERBLA
  327: *     ..
  328: *     .. External Functions ..
  329:       LOGICAL            LSAME
  330:       DOUBLE PRECISION   DLAMCH, DLANGE
  331:       EXTERNAL           LSAME, DLAMCH, DLANGE
  332: *     ..
  333: *     .. Intrinsic Functions ..
  334:       INTRINSIC          ABS, MAX, SQRT
  335: *     ..
  336: *     .. Executable Statements ..
  337: *
  338: *     Decode the input arguments
  339: *
  340:       IF( LSAME( JOBVSL, 'N' ) ) THEN
  341:          IJOBVL = 1
  342:          ILVSL = .FALSE.
  343:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  344:          IJOBVL = 2
  345:          ILVSL = .TRUE.
  346:       ELSE
  347:          IJOBVL = -1
  348:          ILVSL = .FALSE.
  349:       END IF
  350: *
  351:       IF( LSAME( JOBVSR, 'N' ) ) THEN
  352:          IJOBVR = 1
  353:          ILVSR = .FALSE.
  354:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  355:          IJOBVR = 2
  356:          ILVSR = .TRUE.
  357:       ELSE
  358:          IJOBVR = -1
  359:          ILVSR = .FALSE.
  360:       END IF
  361: *
  362:       WANTST = LSAME( SORT, 'S' )
  363: *
  364: *     Test the input arguments
  365: *
  366:       INFO = 0
  367:       LQUERY = ( LWORK.EQ.-1 )
  368:       IF( IJOBVL.LE.0 ) THEN
  369:          INFO = -1
  370:       ELSE IF( IJOBVR.LE.0 ) THEN
  371:          INFO = -2
  372:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  373:          INFO = -3
  374:       ELSE IF( N.LT.0 ) THEN
  375:          INFO = -5
  376:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  377:          INFO = -7
  378:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  379:          INFO = -9
  380:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  381:          INFO = -15
  382:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  383:          INFO = -17
  384:       ELSE IF( LWORK.LT.6*N+16 .AND. .NOT.LQUERY ) THEN
  385:          INFO = -19
  386:       END IF
  387: *
  388: *     Compute workspace
  389: *
  390:       IF( INFO.EQ.0 ) THEN
  391:          CALL DGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
  392:          LWKOPT = MAX( 6*N+16, 3*N+INT( WORK ( 1 ) ) )
  393:          CALL DORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK,
  394:      $                -1, IERR )
  395:          LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
  396:          IF( ILVSL ) THEN
  397:             CALL DORGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR )
  398:             LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
  399:          END IF
  400:          CALL DGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL,
  401:      $                LDVSL, VSR, LDVSR, WORK, -1, IERR )
  402:          LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
  403:          CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB,
  404:      $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
  405:      $                WORK, -1, IERR )
  406:          LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) )
  407:          IF( WANTST ) THEN
  408:             CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
  409:      $                   ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
  410:      $                   SDIM, PVSL, PVSR, DIF, WORK, -1, IDUM, 1,
  411:      $                   IERR )
  412:             LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) )
  413:          END IF
  414:          WORK( 1 ) = LWKOPT
  415:       END IF
  416: *
  417:       IF( INFO.NE.0 ) THEN
  418:          CALL XERBLA( 'DGGES3 ', -INFO )
  419:          RETURN
  420:       ELSE IF( LQUERY ) THEN
  421:          RETURN
  422:       END IF
  423: *
  424: *     Quick return if possible
  425: *
  426:       IF( N.EQ.0 ) THEN
  427:          SDIM = 0
  428:          RETURN
  429:       END IF
  430: *
  431: *     Get machine constants
  432: *
  433:       EPS = DLAMCH( 'P' )
  434:       SAFMIN = DLAMCH( 'S' )
  435:       SAFMAX = ONE / SAFMIN
  436:       CALL DLABAD( SAFMIN, SAFMAX )
  437:       SMLNUM = SQRT( SAFMIN ) / EPS
  438:       BIGNUM = ONE / SMLNUM
  439: *
  440: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  441: *
  442:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
  443:       ILASCL = .FALSE.
  444:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  445:          ANRMTO = SMLNUM
  446:          ILASCL = .TRUE.
  447:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  448:          ANRMTO = BIGNUM
  449:          ILASCL = .TRUE.
  450:       END IF
  451:       IF( ILASCL )
  452:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  453: *
  454: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  455: *
  456:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
  457:       ILBSCL = .FALSE.
  458:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  459:          BNRMTO = SMLNUM
  460:          ILBSCL = .TRUE.
  461:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  462:          BNRMTO = BIGNUM
  463:          ILBSCL = .TRUE.
  464:       END IF
  465:       IF( ILBSCL )
  466:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  467: *
  468: *     Permute the matrix to make it more nearly triangular
  469: *
  470:       ILEFT = 1
  471:       IRIGHT = N + 1
  472:       IWRK = IRIGHT + N
  473:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
  474:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
  475: *
  476: *     Reduce B to triangular form (QR decomposition of B)
  477: *
  478:       IROWS = IHI + 1 - ILO
  479:       ICOLS = N + 1 - ILO
  480:       ITAU = IWRK
  481:       IWRK = ITAU + IROWS
  482:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  483:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  484: *
  485: *     Apply the orthogonal transformation to matrix A
  486: *
  487:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  488:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  489:      $             LWORK+1-IWRK, IERR )
  490: *
  491: *     Initialize VSL
  492: *
  493:       IF( ILVSL ) THEN
  494:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
  495:          IF( IROWS.GT.1 ) THEN
  496:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  497:      $                   VSL( ILO+1, ILO ), LDVSL )
  498:          END IF
  499:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  500:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  501:       END IF
  502: *
  503: *     Initialize VSR
  504: *
  505:       IF( ILVSR )
  506:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
  507: *
  508: *     Reduce to generalized Hessenberg form
  509: *
  510:       CALL DGGHD3( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  511:      $             LDVSL, VSR, LDVSR, WORK( IWRK ), LWORK+1-IWRK,
  512:      $             IERR )
  513: *
  514: *     Perform QZ algorithm, computing Schur vectors if desired
  515: *
  516:       IWRK = ITAU
  517:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  518:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
  519:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  520:       IF( IERR.NE.0 ) THEN
  521:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  522:             INFO = IERR
  523:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  524:             INFO = IERR - N
  525:          ELSE
  526:             INFO = N + 1
  527:          END IF
  528:          GO TO 50
  529:       END IF
  530: *
  531: *     Sort eigenvalues ALPHA/BETA if desired
  532: *
  533:       SDIM = 0
  534:       IF( WANTST ) THEN
  535: *
  536: *        Undo scaling on eigenvalues before SELCTGing
  537: *
  538:          IF( ILASCL ) THEN
  539:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
  540:      $                   IERR )
  541:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
  542:      $                   IERR )
  543:          END IF
  544:          IF( ILBSCL )
  545:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  546: *
  547: *        Select eigenvalues
  548: *
  549:          DO 10 I = 1, N
  550:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
  551:    10    CONTINUE
  552: *
  553:          CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
  554:      $                ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
  555:      $                PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
  556:      $                IERR )
  557:          IF( IERR.EQ.1 )
  558:      $      INFO = N + 3
  559: *
  560:       END IF
  561: *
  562: *     Apply back-permutation to VSL and VSR
  563: *
  564:       IF( ILVSL )
  565:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
  566:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
  567: *
  568:       IF( ILVSR )
  569:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
  570:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
  571: *
  572: *     Check if unscaling would cause over/underflow, if so, rescale
  573: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
  574: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
  575: *
  576:       IF( ILASCL ) THEN
  577:          DO 20 I = 1, N
  578:             IF( ALPHAI( I ).NE.ZERO ) THEN
  579:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
  580:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
  581:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
  582:                   BETA( I ) = BETA( I )*WORK( 1 )
  583:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
  584:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
  585:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
  586:      $                  ( ANRMTO / ANRM ) .OR.
  587:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
  588:      $                   THEN
  589:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
  590:                   BETA( I ) = BETA( I )*WORK( 1 )
  591:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
  592:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
  593:                END IF
  594:             END IF
  595:    20    CONTINUE
  596:       END IF
  597: *
  598:       IF( ILBSCL ) THEN
  599:          DO 30 I = 1, N
  600:             IF( ALPHAI( I ).NE.ZERO ) THEN
  601:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
  602:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
  603:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
  604:                   BETA( I ) = BETA( I )*WORK( 1 )
  605:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
  606:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
  607:                END IF
  608:             END IF
  609:    30    CONTINUE
  610:       END IF
  611: *
  612: *     Undo scaling
  613: *
  614:       IF( ILASCL ) THEN
  615:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
  616:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
  617:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
  618:       END IF
  619: *
  620:       IF( ILBSCL ) THEN
  621:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
  622:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  623:       END IF
  624: *
  625:       IF( WANTST ) THEN
  626: *
  627: *        Check if reordering is correct
  628: *
  629:          LASTSL = .TRUE.
  630:          LST2SL = .TRUE.
  631:          SDIM = 0
  632:          IP = 0
  633:          DO 40 I = 1, N
  634:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
  635:             IF( ALPHAI( I ).EQ.ZERO ) THEN
  636:                IF( CURSL )
  637:      $            SDIM = SDIM + 1
  638:                IP = 0
  639:                IF( CURSL .AND. .NOT.LASTSL )
  640:      $            INFO = N + 2
  641:             ELSE
  642:                IF( IP.EQ.1 ) THEN
  643: *
  644: *                 Last eigenvalue of conjugate pair
  645: *
  646:                   CURSL = CURSL .OR. LASTSL
  647:                   LASTSL = CURSL
  648:                   IF( CURSL )
  649:      $               SDIM = SDIM + 2
  650:                   IP = -1
  651:                   IF( CURSL .AND. .NOT.LST2SL )
  652:      $               INFO = N + 2
  653:                ELSE
  654: *
  655: *                 First eigenvalue of conjugate pair
  656: *
  657:                   IP = 1
  658:                END IF
  659:             END IF
  660:             LST2SL = LASTSL
  661:             LASTSL = CURSL
  662:    40    CONTINUE
  663: *
  664:       END IF
  665: *
  666:    50 CONTINUE
  667: *
  668:       WORK( 1 ) = LWKOPT
  669: *
  670:       RETURN
  671: *
  672: *     End of DGGES3
  673: *
  674:       END

CVSweb interface <joel.bertrand@systella.fr>