Annotation of rpl/lapack/lapack/dgges3.f, revision 1.5

1.1       bertrand    1: *> \brief <b> DGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices (blocked algorithm)</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGGES3 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgges3.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgges3.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgges3.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
                     22: *                          SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
                     23: *                          LDVSR, WORK, LWORK, BWORK, INFO )
                     24: *
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBVSL, JOBVSR, SORT
                     27: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       LOGICAL            BWORK( * )
                     31: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                     32: *      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
                     33: *      $                   VSR( LDVSR, * ), WORK( * )
                     34: *       ..
                     35: *       .. Function Arguments ..
                     36: *       LOGICAL            SELCTG
                     37: *       EXTERNAL           SELCTG
                     38: *       ..
                     39: *
                     40: *
                     41: *> \par Purpose:
                     42: *  =============
                     43: *>
                     44: *> \verbatim
                     45: *>
                     46: *> DGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B),
                     47: *> the generalized eigenvalues, the generalized real Schur form (S,T),
                     48: *> optionally, the left and/or right matrices of Schur vectors (VSL and
                     49: *> VSR). This gives the generalized Schur factorization
                     50: *>
                     51: *>          (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
                     52: *>
                     53: *> Optionally, it also orders the eigenvalues so that a selected cluster
                     54: *> of eigenvalues appears in the leading diagonal blocks of the upper
                     55: *> quasi-triangular matrix S and the upper triangular matrix T.The
                     56: *> leading columns of VSL and VSR then form an orthonormal basis for the
                     57: *> corresponding left and right eigenspaces (deflating subspaces).
                     58: *>
                     59: *> (If only the generalized eigenvalues are needed, use the driver
                     60: *> DGGEV instead, which is faster.)
                     61: *>
                     62: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
                     63: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
                     64: *> usually represented as the pair (alpha,beta), as there is a
                     65: *> reasonable interpretation for beta=0 or both being zero.
                     66: *>
                     67: *> A pair of matrices (S,T) is in generalized real Schur form if T is
                     68: *> upper triangular with non-negative diagonal and S is block upper
                     69: *> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
                     70: *> to real generalized eigenvalues, while 2-by-2 blocks of S will be
                     71: *> "standardized" by making the corresponding elements of T have the
                     72: *> form:
                     73: *>         [  a  0  ]
                     74: *>         [  0  b  ]
                     75: *>
                     76: *> and the pair of corresponding 2-by-2 blocks in S and T will have a
                     77: *> complex conjugate pair of generalized eigenvalues.
                     78: *>
                     79: *> \endverbatim
                     80: *
                     81: *  Arguments:
                     82: *  ==========
                     83: *
                     84: *> \param[in] JOBVSL
                     85: *> \verbatim
                     86: *>          JOBVSL is CHARACTER*1
                     87: *>          = 'N':  do not compute the left Schur vectors;
                     88: *>          = 'V':  compute the left Schur vectors.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] JOBVSR
                     92: *> \verbatim
                     93: *>          JOBVSR is CHARACTER*1
                     94: *>          = 'N':  do not compute the right Schur vectors;
                     95: *>          = 'V':  compute the right Schur vectors.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] SORT
                     99: *> \verbatim
                    100: *>          SORT is CHARACTER*1
                    101: *>          Specifies whether or not to order the eigenvalues on the
                    102: *>          diagonal of the generalized Schur form.
                    103: *>          = 'N':  Eigenvalues are not ordered;
                    104: *>          = 'S':  Eigenvalues are ordered (see SELCTG);
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] SELCTG
                    108: *> \verbatim
                    109: *>          SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments
                    110: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
                    111: *>          If SORT = 'N', SELCTG is not referenced.
                    112: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
                    113: *>          to the top left of the Schur form.
                    114: *>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
                    115: *>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
                    116: *>          one of a complex conjugate pair of eigenvalues is selected,
                    117: *>          then both complex eigenvalues are selected.
                    118: *>
                    119: *>          Note that in the ill-conditioned case, a selected complex
                    120: *>          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
                    121: *>          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
                    122: *>          in this case.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] N
                    126: *> \verbatim
                    127: *>          N is INTEGER
                    128: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in,out] A
                    132: *> \verbatim
                    133: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                    134: *>          On entry, the first of the pair of matrices.
                    135: *>          On exit, A has been overwritten by its generalized Schur
                    136: *>          form S.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] LDA
                    140: *> \verbatim
                    141: *>          LDA is INTEGER
                    142: *>          The leading dimension of A.  LDA >= max(1,N).
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in,out] B
                    146: *> \verbatim
                    147: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
                    148: *>          On entry, the second of the pair of matrices.
                    149: *>          On exit, B has been overwritten by its generalized Schur
                    150: *>          form T.
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[in] LDB
                    154: *> \verbatim
                    155: *>          LDB is INTEGER
                    156: *>          The leading dimension of B.  LDB >= max(1,N).
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[out] SDIM
                    160: *> \verbatim
                    161: *>          SDIM is INTEGER
                    162: *>          If SORT = 'N', SDIM = 0.
                    163: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    164: *>          for which SELCTG is true.  (Complex conjugate pairs for which
                    165: *>          SELCTG is true for either eigenvalue count as 2.)
                    166: *> \endverbatim
                    167: *>
                    168: *> \param[out] ALPHAR
                    169: *> \verbatim
                    170: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
                    171: *> \endverbatim
                    172: *>
                    173: *> \param[out] ALPHAI
                    174: *> \verbatim
                    175: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[out] BETA
                    179: *> \verbatim
                    180: *>          BETA is DOUBLE PRECISION array, dimension (N)
                    181: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
                    182: *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
                    183: *>          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
                    184: *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
                    185: *>          the real Schur form of (A,B) were further reduced to
                    186: *>          triangular form using 2-by-2 complex unitary transformations.
                    187: *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
                    188: *>          positive, then the j-th and (j+1)-st eigenvalues are a
                    189: *>          complex conjugate pair, with ALPHAI(j+1) negative.
                    190: *>
                    191: *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
                    192: *>          may easily over- or underflow, and BETA(j) may even be zero.
                    193: *>          Thus, the user should avoid naively computing the ratio.
                    194: *>          However, ALPHAR and ALPHAI will be always less than and
                    195: *>          usually comparable with norm(A) in magnitude, and BETA always
                    196: *>          less than and usually comparable with norm(B).
                    197: *> \endverbatim
                    198: *>
                    199: *> \param[out] VSL
                    200: *> \verbatim
                    201: *>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
                    202: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
                    203: *>          Not referenced if JOBVSL = 'N'.
                    204: *> \endverbatim
                    205: *>
                    206: *> \param[in] LDVSL
                    207: *> \verbatim
                    208: *>          LDVSL is INTEGER
                    209: *>          The leading dimension of the matrix VSL. LDVSL >=1, and
                    210: *>          if JOBVSL = 'V', LDVSL >= N.
                    211: *> \endverbatim
                    212: *>
                    213: *> \param[out] VSR
                    214: *> \verbatim
                    215: *>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
                    216: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
                    217: *>          Not referenced if JOBVSR = 'N'.
                    218: *> \endverbatim
                    219: *>
                    220: *> \param[in] LDVSR
                    221: *> \verbatim
                    222: *>          LDVSR is INTEGER
                    223: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
                    224: *>          if JOBVSR = 'V', LDVSR >= N.
                    225: *> \endverbatim
                    226: *>
                    227: *> \param[out] WORK
                    228: *> \verbatim
                    229: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    230: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    231: *> \endverbatim
                    232: *>
                    233: *> \param[in] LWORK
                    234: *> \verbatim
                    235: *>          LWORK is INTEGER
                    236: *>          The dimension of the array WORK.
                    237: *>
                    238: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    239: *>          only calculates the optimal size of the WORK array, returns
                    240: *>          this value as the first entry of the WORK array, and no error
                    241: *>          message related to LWORK is issued by XERBLA.
                    242: *> \endverbatim
                    243: *>
                    244: *> \param[out] BWORK
                    245: *> \verbatim
                    246: *>          BWORK is LOGICAL array, dimension (N)
                    247: *>          Not referenced if SORT = 'N'.
                    248: *> \endverbatim
                    249: *>
                    250: *> \param[out] INFO
                    251: *> \verbatim
                    252: *>          INFO is INTEGER
                    253: *>          = 0:  successful exit
                    254: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    255: *>          = 1,...,N:
                    256: *>                The QZ iteration failed.  (A,B) are not in Schur
                    257: *>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
                    258: *>                be correct for j=INFO+1,...,N.
1.5     ! bertrand  259: *>          > N:  =N+1: other than QZ iteration failed in DLAQZ0.
1.1       bertrand  260: *>                =N+2: after reordering, roundoff changed values of
                    261: *>                      some complex eigenvalues so that leading
                    262: *>                      eigenvalues in the Generalized Schur form no
                    263: *>                      longer satisfy SELCTG=.TRUE.  This could also
                    264: *>                      be caused due to scaling.
                    265: *>                =N+3: reordering failed in DTGSEN.
                    266: *> \endverbatim
                    267: *
                    268: *  Authors:
                    269: *  ========
                    270: *
                    271: *> \author Univ. of Tennessee
                    272: *> \author Univ. of California Berkeley
                    273: *> \author Univ. of Colorado Denver
                    274: *> \author NAG Ltd.
                    275: *
                    276: *> \ingroup doubleGEeigen
                    277: *
                    278: *  =====================================================================
                    279:       SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
                    280:      $                   LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
                    281:      $                   VSR, LDVSR, WORK, LWORK, BWORK, INFO )
                    282: *
1.5     ! bertrand  283: *  -- LAPACK driver routine --
1.1       bertrand  284: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    285: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    286: *
                    287: *     .. Scalar Arguments ..
                    288:       CHARACTER          JOBVSL, JOBVSR, SORT
                    289:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
                    290: *     ..
                    291: *     .. Array Arguments ..
                    292:       LOGICAL            BWORK( * )
                    293:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                    294:      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
                    295:      $                   VSR( LDVSR, * ), WORK( * )
                    296: *     ..
                    297: *     .. Function Arguments ..
                    298:       LOGICAL            SELCTG
                    299:       EXTERNAL           SELCTG
                    300: *     ..
                    301: *
                    302: *  =====================================================================
                    303: *
                    304: *     .. Parameters ..
                    305:       DOUBLE PRECISION   ZERO, ONE
                    306:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    307: *     ..
                    308: *     .. Local Scalars ..
                    309:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    310:      $                   LQUERY, LST2SL, WANTST
                    311:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
                    312:      $                   ILO, IP, IRIGHT, IROWS, ITAU, IWRK, LWKOPT
                    313:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
                    314:      $                   PVSR, SAFMAX, SAFMIN, SMLNUM
                    315: *     ..
                    316: *     .. Local Arrays ..
                    317:       INTEGER            IDUM( 1 )
                    318:       DOUBLE PRECISION   DIF( 2 )
                    319: *     ..
                    320: *     .. External Subroutines ..
1.5     ! bertrand  321:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHD3, DLAQZ0, DLABAD,
1.1       bertrand  322:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
                    323:      $                   XERBLA
                    324: *     ..
                    325: *     .. External Functions ..
                    326:       LOGICAL            LSAME
                    327:       DOUBLE PRECISION   DLAMCH, DLANGE
                    328:       EXTERNAL           LSAME, DLAMCH, DLANGE
                    329: *     ..
                    330: *     .. Intrinsic Functions ..
                    331:       INTRINSIC          ABS, MAX, SQRT
                    332: *     ..
                    333: *     .. Executable Statements ..
                    334: *
                    335: *     Decode the input arguments
                    336: *
                    337:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    338:          IJOBVL = 1
                    339:          ILVSL = .FALSE.
                    340:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    341:          IJOBVL = 2
                    342:          ILVSL = .TRUE.
                    343:       ELSE
                    344:          IJOBVL = -1
                    345:          ILVSL = .FALSE.
                    346:       END IF
                    347: *
                    348:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    349:          IJOBVR = 1
                    350:          ILVSR = .FALSE.
                    351:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    352:          IJOBVR = 2
                    353:          ILVSR = .TRUE.
                    354:       ELSE
                    355:          IJOBVR = -1
                    356:          ILVSR = .FALSE.
                    357:       END IF
                    358: *
                    359:       WANTST = LSAME( SORT, 'S' )
                    360: *
                    361: *     Test the input arguments
                    362: *
                    363:       INFO = 0
                    364:       LQUERY = ( LWORK.EQ.-1 )
                    365:       IF( IJOBVL.LE.0 ) THEN
                    366:          INFO = -1
                    367:       ELSE IF( IJOBVR.LE.0 ) THEN
                    368:          INFO = -2
                    369:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    370:          INFO = -3
                    371:       ELSE IF( N.LT.0 ) THEN
                    372:          INFO = -5
                    373:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    374:          INFO = -7
                    375:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    376:          INFO = -9
                    377:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    378:          INFO = -15
                    379:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    380:          INFO = -17
                    381:       ELSE IF( LWORK.LT.6*N+16 .AND. .NOT.LQUERY ) THEN
                    382:          INFO = -19
                    383:       END IF
                    384: *
                    385: *     Compute workspace
                    386: *
                    387:       IF( INFO.EQ.0 ) THEN
                    388:          CALL DGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
                    389:          LWKOPT = MAX( 6*N+16, 3*N+INT( WORK ( 1 ) ) )
                    390:          CALL DORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK,
                    391:      $                -1, IERR )
                    392:          LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
                    393:          IF( ILVSL ) THEN
                    394:             CALL DORGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR )
                    395:             LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
                    396:          END IF
                    397:          CALL DGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL,
                    398:      $                LDVSL, VSR, LDVSR, WORK, -1, IERR )
                    399:          LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
1.5     ! bertrand  400:          CALL DLAQZ0( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB,
1.1       bertrand  401:      $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
1.5     ! bertrand  402:      $                WORK, -1, 0, IERR )
1.1       bertrand  403:          LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) )
                    404:          IF( WANTST ) THEN
                    405:             CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
                    406:      $                   ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
                    407:      $                   SDIM, PVSL, PVSR, DIF, WORK, -1, IDUM, 1,
                    408:      $                   IERR )
                    409:             LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) )
                    410:          END IF
                    411:          WORK( 1 ) = LWKOPT
                    412:       END IF
                    413: *
                    414:       IF( INFO.NE.0 ) THEN
                    415:          CALL XERBLA( 'DGGES3 ', -INFO )
                    416:          RETURN
                    417:       ELSE IF( LQUERY ) THEN
                    418:          RETURN
                    419:       END IF
                    420: *
                    421: *     Quick return if possible
                    422: *
                    423:       IF( N.EQ.0 ) THEN
                    424:          SDIM = 0
                    425:          RETURN
                    426:       END IF
                    427: *
                    428: *     Get machine constants
                    429: *
                    430:       EPS = DLAMCH( 'P' )
                    431:       SAFMIN = DLAMCH( 'S' )
                    432:       SAFMAX = ONE / SAFMIN
                    433:       CALL DLABAD( SAFMIN, SAFMAX )
                    434:       SMLNUM = SQRT( SAFMIN ) / EPS
                    435:       BIGNUM = ONE / SMLNUM
                    436: *
                    437: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    438: *
                    439:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    440:       ILASCL = .FALSE.
                    441:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    442:          ANRMTO = SMLNUM
                    443:          ILASCL = .TRUE.
                    444:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    445:          ANRMTO = BIGNUM
                    446:          ILASCL = .TRUE.
                    447:       END IF
                    448:       IF( ILASCL )
                    449:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    450: *
                    451: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    452: *
                    453:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    454:       ILBSCL = .FALSE.
                    455:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    456:          BNRMTO = SMLNUM
                    457:          ILBSCL = .TRUE.
                    458:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    459:          BNRMTO = BIGNUM
                    460:          ILBSCL = .TRUE.
                    461:       END IF
                    462:       IF( ILBSCL )
                    463:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    464: *
                    465: *     Permute the matrix to make it more nearly triangular
                    466: *
                    467:       ILEFT = 1
                    468:       IRIGHT = N + 1
                    469:       IWRK = IRIGHT + N
                    470:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
                    471:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
                    472: *
                    473: *     Reduce B to triangular form (QR decomposition of B)
                    474: *
                    475:       IROWS = IHI + 1 - ILO
                    476:       ICOLS = N + 1 - ILO
                    477:       ITAU = IWRK
                    478:       IWRK = ITAU + IROWS
                    479:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    480:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    481: *
                    482: *     Apply the orthogonal transformation to matrix A
                    483: *
                    484:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    485:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    486:      $             LWORK+1-IWRK, IERR )
                    487: *
                    488: *     Initialize VSL
                    489: *
                    490:       IF( ILVSL ) THEN
                    491:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
                    492:          IF( IROWS.GT.1 ) THEN
                    493:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    494:      $                   VSL( ILO+1, ILO ), LDVSL )
                    495:          END IF
                    496:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    497:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    498:       END IF
                    499: *
                    500: *     Initialize VSR
                    501: *
                    502:       IF( ILVSR )
                    503:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
                    504: *
                    505: *     Reduce to generalized Hessenberg form
                    506: *
                    507:       CALL DGGHD3( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    508:      $             LDVSL, VSR, LDVSR, WORK( IWRK ), LWORK+1-IWRK,
                    509:      $             IERR )
                    510: *
                    511: *     Perform QZ algorithm, computing Schur vectors if desired
                    512: *
                    513:       IWRK = ITAU
1.5     ! bertrand  514:       CALL DLAQZ0( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
1.1       bertrand  515:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
1.5     ! bertrand  516:      $             WORK( IWRK ), LWORK+1-IWRK, 0, IERR )
1.1       bertrand  517:       IF( IERR.NE.0 ) THEN
                    518:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    519:             INFO = IERR
                    520:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    521:             INFO = IERR - N
                    522:          ELSE
                    523:             INFO = N + 1
                    524:          END IF
                    525:          GO TO 50
                    526:       END IF
                    527: *
                    528: *     Sort eigenvalues ALPHA/BETA if desired
                    529: *
                    530:       SDIM = 0
                    531:       IF( WANTST ) THEN
                    532: *
                    533: *        Undo scaling on eigenvalues before SELCTGing
                    534: *
                    535:          IF( ILASCL ) THEN
                    536:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
                    537:      $                   IERR )
                    538:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
                    539:      $                   IERR )
                    540:          END IF
                    541:          IF( ILBSCL )
                    542:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    543: *
                    544: *        Select eigenvalues
                    545: *
                    546:          DO 10 I = 1, N
                    547:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    548:    10    CONTINUE
                    549: *
                    550:          CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
                    551:      $                ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
                    552:      $                PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
                    553:      $                IERR )
                    554:          IF( IERR.EQ.1 )
                    555:      $      INFO = N + 3
                    556: *
                    557:       END IF
                    558: *
                    559: *     Apply back-permutation to VSL and VSR
                    560: *
                    561:       IF( ILVSL )
                    562:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
                    563:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    564: *
                    565:       IF( ILVSR )
                    566:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
                    567:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    568: *
                    569: *     Check if unscaling would cause over/underflow, if so, rescale
                    570: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
                    571: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
                    572: *
                    573:       IF( ILASCL ) THEN
                    574:          DO 20 I = 1, N
                    575:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    576:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
                    577:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
                    578:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
                    579:                   BETA( I ) = BETA( I )*WORK( 1 )
                    580:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    581:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    582:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
                    583:      $                  ( ANRMTO / ANRM ) .OR.
                    584:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
                    585:      $                   THEN
                    586:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
                    587:                   BETA( I ) = BETA( I )*WORK( 1 )
                    588:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    589:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    590:                END IF
                    591:             END IF
                    592:    20    CONTINUE
                    593:       END IF
                    594: *
                    595:       IF( ILBSCL ) THEN
                    596:          DO 30 I = 1, N
                    597:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    598:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
                    599:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
                    600:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
                    601:                   BETA( I ) = BETA( I )*WORK( 1 )
                    602:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    603:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    604:                END IF
                    605:             END IF
                    606:    30    CONTINUE
                    607:       END IF
                    608: *
                    609: *     Undo scaling
                    610: *
                    611:       IF( ILASCL ) THEN
                    612:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    613:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
                    614:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
                    615:       END IF
                    616: *
                    617:       IF( ILBSCL ) THEN
                    618:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    619:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    620:       END IF
                    621: *
                    622:       IF( WANTST ) THEN
                    623: *
                    624: *        Check if reordering is correct
                    625: *
                    626:          LASTSL = .TRUE.
                    627:          LST2SL = .TRUE.
                    628:          SDIM = 0
                    629:          IP = 0
                    630:          DO 40 I = 1, N
                    631:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    632:             IF( ALPHAI( I ).EQ.ZERO ) THEN
                    633:                IF( CURSL )
                    634:      $            SDIM = SDIM + 1
                    635:                IP = 0
                    636:                IF( CURSL .AND. .NOT.LASTSL )
                    637:      $            INFO = N + 2
                    638:             ELSE
                    639:                IF( IP.EQ.1 ) THEN
                    640: *
                    641: *                 Last eigenvalue of conjugate pair
                    642: *
                    643:                   CURSL = CURSL .OR. LASTSL
                    644:                   LASTSL = CURSL
                    645:                   IF( CURSL )
                    646:      $               SDIM = SDIM + 2
                    647:                   IP = -1
                    648:                   IF( CURSL .AND. .NOT.LST2SL )
                    649:      $               INFO = N + 2
                    650:                ELSE
                    651: *
                    652: *                 First eigenvalue of conjugate pair
                    653: *
                    654:                   IP = 1
                    655:                END IF
                    656:             END IF
                    657:             LST2SL = LASTSL
                    658:             LASTSL = CURSL
                    659:    40    CONTINUE
                    660: *
                    661:       END IF
                    662: *
                    663:    50 CONTINUE
                    664: *
                    665:       WORK( 1 ) = LWKOPT
                    666: *
                    667:       RETURN
                    668: *
                    669: *     End of DGGES3
                    670: *
                    671:       END

CVSweb interface <joel.bertrand@systella.fr>