Annotation of rpl/lapack/lapack/dgges3.f, revision 1.1

1.1     ! bertrand    1: *> \brief <b> DGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices (blocked algorithm)</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGGES3 + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgges3.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgges3.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgges3.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
        !            22: *                          SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
        !            23: *                          LDVSR, WORK, LWORK, BWORK, INFO )
        !            24: *
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          JOBVSL, JOBVSR, SORT
        !            27: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       LOGICAL            BWORK( * )
        !            31: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !            32: *      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
        !            33: *      $                   VSR( LDVSR, * ), WORK( * )
        !            34: *       ..
        !            35: *       .. Function Arguments ..
        !            36: *       LOGICAL            SELCTG
        !            37: *       EXTERNAL           SELCTG
        !            38: *       ..
        !            39: *
        !            40: *
        !            41: *> \par Purpose:
        !            42: *  =============
        !            43: *>
        !            44: *> \verbatim
        !            45: *>
        !            46: *> DGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B),
        !            47: *> the generalized eigenvalues, the generalized real Schur form (S,T),
        !            48: *> optionally, the left and/or right matrices of Schur vectors (VSL and
        !            49: *> VSR). This gives the generalized Schur factorization
        !            50: *>
        !            51: *>          (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
        !            52: *>
        !            53: *> Optionally, it also orders the eigenvalues so that a selected cluster
        !            54: *> of eigenvalues appears in the leading diagonal blocks of the upper
        !            55: *> quasi-triangular matrix S and the upper triangular matrix T.The
        !            56: *> leading columns of VSL and VSR then form an orthonormal basis for the
        !            57: *> corresponding left and right eigenspaces (deflating subspaces).
        !            58: *>
        !            59: *> (If only the generalized eigenvalues are needed, use the driver
        !            60: *> DGGEV instead, which is faster.)
        !            61: *>
        !            62: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
        !            63: *> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
        !            64: *> usually represented as the pair (alpha,beta), as there is a
        !            65: *> reasonable interpretation for beta=0 or both being zero.
        !            66: *>
        !            67: *> A pair of matrices (S,T) is in generalized real Schur form if T is
        !            68: *> upper triangular with non-negative diagonal and S is block upper
        !            69: *> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
        !            70: *> to real generalized eigenvalues, while 2-by-2 blocks of S will be
        !            71: *> "standardized" by making the corresponding elements of T have the
        !            72: *> form:
        !            73: *>         [  a  0  ]
        !            74: *>         [  0  b  ]
        !            75: *>
        !            76: *> and the pair of corresponding 2-by-2 blocks in S and T will have a
        !            77: *> complex conjugate pair of generalized eigenvalues.
        !            78: *>
        !            79: *> \endverbatim
        !            80: *
        !            81: *  Arguments:
        !            82: *  ==========
        !            83: *
        !            84: *> \param[in] JOBVSL
        !            85: *> \verbatim
        !            86: *>          JOBVSL is CHARACTER*1
        !            87: *>          = 'N':  do not compute the left Schur vectors;
        !            88: *>          = 'V':  compute the left Schur vectors.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in] JOBVSR
        !            92: *> \verbatim
        !            93: *>          JOBVSR is CHARACTER*1
        !            94: *>          = 'N':  do not compute the right Schur vectors;
        !            95: *>          = 'V':  compute the right Schur vectors.
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[in] SORT
        !            99: *> \verbatim
        !           100: *>          SORT is CHARACTER*1
        !           101: *>          Specifies whether or not to order the eigenvalues on the
        !           102: *>          diagonal of the generalized Schur form.
        !           103: *>          = 'N':  Eigenvalues are not ordered;
        !           104: *>          = 'S':  Eigenvalues are ordered (see SELCTG);
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] SELCTG
        !           108: *> \verbatim
        !           109: *>          SELCTG is a LOGICAL FUNCTION of three DOUBLE PRECISION arguments
        !           110: *>          SELCTG must be declared EXTERNAL in the calling subroutine.
        !           111: *>          If SORT = 'N', SELCTG is not referenced.
        !           112: *>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
        !           113: *>          to the top left of the Schur form.
        !           114: *>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
        !           115: *>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
        !           116: *>          one of a complex conjugate pair of eigenvalues is selected,
        !           117: *>          then both complex eigenvalues are selected.
        !           118: *>
        !           119: *>          Note that in the ill-conditioned case, a selected complex
        !           120: *>          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
        !           121: *>          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
        !           122: *>          in this case.
        !           123: *> \endverbatim
        !           124: *>
        !           125: *> \param[in] N
        !           126: *> \verbatim
        !           127: *>          N is INTEGER
        !           128: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in,out] A
        !           132: *> \verbatim
        !           133: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
        !           134: *>          On entry, the first of the pair of matrices.
        !           135: *>          On exit, A has been overwritten by its generalized Schur
        !           136: *>          form S.
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[in] LDA
        !           140: *> \verbatim
        !           141: *>          LDA is INTEGER
        !           142: *>          The leading dimension of A.  LDA >= max(1,N).
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[in,out] B
        !           146: *> \verbatim
        !           147: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
        !           148: *>          On entry, the second of the pair of matrices.
        !           149: *>          On exit, B has been overwritten by its generalized Schur
        !           150: *>          form T.
        !           151: *> \endverbatim
        !           152: *>
        !           153: *> \param[in] LDB
        !           154: *> \verbatim
        !           155: *>          LDB is INTEGER
        !           156: *>          The leading dimension of B.  LDB >= max(1,N).
        !           157: *> \endverbatim
        !           158: *>
        !           159: *> \param[out] SDIM
        !           160: *> \verbatim
        !           161: *>          SDIM is INTEGER
        !           162: *>          If SORT = 'N', SDIM = 0.
        !           163: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
        !           164: *>          for which SELCTG is true.  (Complex conjugate pairs for which
        !           165: *>          SELCTG is true for either eigenvalue count as 2.)
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[out] ALPHAR
        !           169: *> \verbatim
        !           170: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
        !           171: *> \endverbatim
        !           172: *>
        !           173: *> \param[out] ALPHAI
        !           174: *> \verbatim
        !           175: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[out] BETA
        !           179: *> \verbatim
        !           180: *>          BETA is DOUBLE PRECISION array, dimension (N)
        !           181: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
        !           182: *>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
        !           183: *>          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
        !           184: *>          form (S,T) that would result if the 2-by-2 diagonal blocks of
        !           185: *>          the real Schur form of (A,B) were further reduced to
        !           186: *>          triangular form using 2-by-2 complex unitary transformations.
        !           187: *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
        !           188: *>          positive, then the j-th and (j+1)-st eigenvalues are a
        !           189: *>          complex conjugate pair, with ALPHAI(j+1) negative.
        !           190: *>
        !           191: *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
        !           192: *>          may easily over- or underflow, and BETA(j) may even be zero.
        !           193: *>          Thus, the user should avoid naively computing the ratio.
        !           194: *>          However, ALPHAR and ALPHAI will be always less than and
        !           195: *>          usually comparable with norm(A) in magnitude, and BETA always
        !           196: *>          less than and usually comparable with norm(B).
        !           197: *> \endverbatim
        !           198: *>
        !           199: *> \param[out] VSL
        !           200: *> \verbatim
        !           201: *>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
        !           202: *>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
        !           203: *>          Not referenced if JOBVSL = 'N'.
        !           204: *> \endverbatim
        !           205: *>
        !           206: *> \param[in] LDVSL
        !           207: *> \verbatim
        !           208: *>          LDVSL is INTEGER
        !           209: *>          The leading dimension of the matrix VSL. LDVSL >=1, and
        !           210: *>          if JOBVSL = 'V', LDVSL >= N.
        !           211: *> \endverbatim
        !           212: *>
        !           213: *> \param[out] VSR
        !           214: *> \verbatim
        !           215: *>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
        !           216: *>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
        !           217: *>          Not referenced if JOBVSR = 'N'.
        !           218: *> \endverbatim
        !           219: *>
        !           220: *> \param[in] LDVSR
        !           221: *> \verbatim
        !           222: *>          LDVSR is INTEGER
        !           223: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
        !           224: *>          if JOBVSR = 'V', LDVSR >= N.
        !           225: *> \endverbatim
        !           226: *>
        !           227: *> \param[out] WORK
        !           228: *> \verbatim
        !           229: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           230: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           231: *> \endverbatim
        !           232: *>
        !           233: *> \param[in] LWORK
        !           234: *> \verbatim
        !           235: *>          LWORK is INTEGER
        !           236: *>          The dimension of the array WORK.
        !           237: *>
        !           238: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           239: *>          only calculates the optimal size of the WORK array, returns
        !           240: *>          this value as the first entry of the WORK array, and no error
        !           241: *>          message related to LWORK is issued by XERBLA.
        !           242: *> \endverbatim
        !           243: *>
        !           244: *> \param[out] BWORK
        !           245: *> \verbatim
        !           246: *>          BWORK is LOGICAL array, dimension (N)
        !           247: *>          Not referenced if SORT = 'N'.
        !           248: *> \endverbatim
        !           249: *>
        !           250: *> \param[out] INFO
        !           251: *> \verbatim
        !           252: *>          INFO is INTEGER
        !           253: *>          = 0:  successful exit
        !           254: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           255: *>          = 1,...,N:
        !           256: *>                The QZ iteration failed.  (A,B) are not in Schur
        !           257: *>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
        !           258: *>                be correct for j=INFO+1,...,N.
        !           259: *>          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
        !           260: *>                =N+2: after reordering, roundoff changed values of
        !           261: *>                      some complex eigenvalues so that leading
        !           262: *>                      eigenvalues in the Generalized Schur form no
        !           263: *>                      longer satisfy SELCTG=.TRUE.  This could also
        !           264: *>                      be caused due to scaling.
        !           265: *>                =N+3: reordering failed in DTGSEN.
        !           266: *> \endverbatim
        !           267: *
        !           268: *  Authors:
        !           269: *  ========
        !           270: *
        !           271: *> \author Univ. of Tennessee
        !           272: *> \author Univ. of California Berkeley
        !           273: *> \author Univ. of Colorado Denver
        !           274: *> \author NAG Ltd.
        !           275: *
        !           276: *> \date January 2015
        !           277: *
        !           278: *> \ingroup doubleGEeigen
        !           279: *
        !           280: *  =====================================================================
        !           281:       SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B,
        !           282:      $                   LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
        !           283:      $                   VSR, LDVSR, WORK, LWORK, BWORK, INFO )
        !           284: *
        !           285: *  -- LAPACK driver routine (version 3.6.0) --
        !           286: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           287: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           288: *     January 2015
        !           289: *
        !           290: *     .. Scalar Arguments ..
        !           291:       CHARACTER          JOBVSL, JOBVSR, SORT
        !           292:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
        !           293: *     ..
        !           294: *     .. Array Arguments ..
        !           295:       LOGICAL            BWORK( * )
        !           296:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !           297:      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
        !           298:      $                   VSR( LDVSR, * ), WORK( * )
        !           299: *     ..
        !           300: *     .. Function Arguments ..
        !           301:       LOGICAL            SELCTG
        !           302:       EXTERNAL           SELCTG
        !           303: *     ..
        !           304: *
        !           305: *  =====================================================================
        !           306: *
        !           307: *     .. Parameters ..
        !           308:       DOUBLE PRECISION   ZERO, ONE
        !           309:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           310: *     ..
        !           311: *     .. Local Scalars ..
        !           312:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
        !           313:      $                   LQUERY, LST2SL, WANTST
        !           314:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
        !           315:      $                   ILO, IP, IRIGHT, IROWS, ITAU, IWRK, LWKOPT
        !           316:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
        !           317:      $                   PVSR, SAFMAX, SAFMIN, SMLNUM
        !           318: *     ..
        !           319: *     .. Local Arrays ..
        !           320:       INTEGER            IDUM( 1 )
        !           321:       DOUBLE PRECISION   DIF( 2 )
        !           322: *     ..
        !           323: *     .. External Subroutines ..
        !           324:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHD3, DHGEQZ, DLABAD,
        !           325:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
        !           326:      $                   XERBLA
        !           327: *     ..
        !           328: *     .. External Functions ..
        !           329:       LOGICAL            LSAME
        !           330:       DOUBLE PRECISION   DLAMCH, DLANGE
        !           331:       EXTERNAL           LSAME, DLAMCH, DLANGE
        !           332: *     ..
        !           333: *     .. Intrinsic Functions ..
        !           334:       INTRINSIC          ABS, MAX, SQRT
        !           335: *     ..
        !           336: *     .. Executable Statements ..
        !           337: *
        !           338: *     Decode the input arguments
        !           339: *
        !           340:       IF( LSAME( JOBVSL, 'N' ) ) THEN
        !           341:          IJOBVL = 1
        !           342:          ILVSL = .FALSE.
        !           343:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
        !           344:          IJOBVL = 2
        !           345:          ILVSL = .TRUE.
        !           346:       ELSE
        !           347:          IJOBVL = -1
        !           348:          ILVSL = .FALSE.
        !           349:       END IF
        !           350: *
        !           351:       IF( LSAME( JOBVSR, 'N' ) ) THEN
        !           352:          IJOBVR = 1
        !           353:          ILVSR = .FALSE.
        !           354:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
        !           355:          IJOBVR = 2
        !           356:          ILVSR = .TRUE.
        !           357:       ELSE
        !           358:          IJOBVR = -1
        !           359:          ILVSR = .FALSE.
        !           360:       END IF
        !           361: *
        !           362:       WANTST = LSAME( SORT, 'S' )
        !           363: *
        !           364: *     Test the input arguments
        !           365: *
        !           366:       INFO = 0
        !           367:       LQUERY = ( LWORK.EQ.-1 )
        !           368:       IF( IJOBVL.LE.0 ) THEN
        !           369:          INFO = -1
        !           370:       ELSE IF( IJOBVR.LE.0 ) THEN
        !           371:          INFO = -2
        !           372:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
        !           373:          INFO = -3
        !           374:       ELSE IF( N.LT.0 ) THEN
        !           375:          INFO = -5
        !           376:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           377:          INFO = -7
        !           378:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           379:          INFO = -9
        !           380:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
        !           381:          INFO = -15
        !           382:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
        !           383:          INFO = -17
        !           384:       ELSE IF( LWORK.LT.6*N+16 .AND. .NOT.LQUERY ) THEN
        !           385:          INFO = -19
        !           386:       END IF
        !           387: *
        !           388: *     Compute workspace
        !           389: *
        !           390:       IF( INFO.EQ.0 ) THEN
        !           391:          CALL DGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
        !           392:          LWKOPT = MAX( 6*N+16, 3*N+INT( WORK ( 1 ) ) )
        !           393:          CALL DORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK,
        !           394:      $                -1, IERR )
        !           395:          LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
        !           396:          IF( ILVSL ) THEN
        !           397:             CALL DORGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR )
        !           398:             LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
        !           399:          END IF
        !           400:          CALL DGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL,
        !           401:      $                LDVSL, VSR, LDVSR, WORK, -1, IERR )
        !           402:          LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) )
        !           403:          CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB,
        !           404:      $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
        !           405:      $                WORK, -1, IERR )
        !           406:          LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) )
        !           407:          IF( WANTST ) THEN
        !           408:             CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
        !           409:      $                   ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
        !           410:      $                   SDIM, PVSL, PVSR, DIF, WORK, -1, IDUM, 1,
        !           411:      $                   IERR )
        !           412:             LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) )
        !           413:          END IF
        !           414:          WORK( 1 ) = LWKOPT
        !           415:       END IF
        !           416: *
        !           417:       IF( INFO.NE.0 ) THEN
        !           418:          CALL XERBLA( 'DGGES3 ', -INFO )
        !           419:          RETURN
        !           420:       ELSE IF( LQUERY ) THEN
        !           421:          RETURN
        !           422:       END IF
        !           423: *
        !           424: *     Quick return if possible
        !           425: *
        !           426:       IF( N.EQ.0 ) THEN
        !           427:          SDIM = 0
        !           428:          RETURN
        !           429:       END IF
        !           430: *
        !           431: *     Get machine constants
        !           432: *
        !           433:       EPS = DLAMCH( 'P' )
        !           434:       SAFMIN = DLAMCH( 'S' )
        !           435:       SAFMAX = ONE / SAFMIN
        !           436:       CALL DLABAD( SAFMIN, SAFMAX )
        !           437:       SMLNUM = SQRT( SAFMIN ) / EPS
        !           438:       BIGNUM = ONE / SMLNUM
        !           439: *
        !           440: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           441: *
        !           442:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
        !           443:       ILASCL = .FALSE.
        !           444:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           445:          ANRMTO = SMLNUM
        !           446:          ILASCL = .TRUE.
        !           447:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           448:          ANRMTO = BIGNUM
        !           449:          ILASCL = .TRUE.
        !           450:       END IF
        !           451:       IF( ILASCL )
        !           452:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
        !           453: *
        !           454: *     Scale B if max element outside range [SMLNUM,BIGNUM]
        !           455: *
        !           456:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
        !           457:       ILBSCL = .FALSE.
        !           458:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           459:          BNRMTO = SMLNUM
        !           460:          ILBSCL = .TRUE.
        !           461:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           462:          BNRMTO = BIGNUM
        !           463:          ILBSCL = .TRUE.
        !           464:       END IF
        !           465:       IF( ILBSCL )
        !           466:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
        !           467: *
        !           468: *     Permute the matrix to make it more nearly triangular
        !           469: *
        !           470:       ILEFT = 1
        !           471:       IRIGHT = N + 1
        !           472:       IWRK = IRIGHT + N
        !           473:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
        !           474:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
        !           475: *
        !           476: *     Reduce B to triangular form (QR decomposition of B)
        !           477: *
        !           478:       IROWS = IHI + 1 - ILO
        !           479:       ICOLS = N + 1 - ILO
        !           480:       ITAU = IWRK
        !           481:       IWRK = ITAU + IROWS
        !           482:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
        !           483:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           484: *
        !           485: *     Apply the orthogonal transformation to matrix A
        !           486: *
        !           487:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
        !           488:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
        !           489:      $             LWORK+1-IWRK, IERR )
        !           490: *
        !           491: *     Initialize VSL
        !           492: *
        !           493:       IF( ILVSL ) THEN
        !           494:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
        !           495:          IF( IROWS.GT.1 ) THEN
        !           496:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
        !           497:      $                   VSL( ILO+1, ILO ), LDVSL )
        !           498:          END IF
        !           499:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
        !           500:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           501:       END IF
        !           502: *
        !           503: *     Initialize VSR
        !           504: *
        !           505:       IF( ILVSR )
        !           506:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
        !           507: *
        !           508: *     Reduce to generalized Hessenberg form
        !           509: *
        !           510:       CALL DGGHD3( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
        !           511:      $             LDVSL, VSR, LDVSR, WORK( IWRK ), LWORK+1-IWRK,
        !           512:      $             IERR )
        !           513: *
        !           514: *     Perform QZ algorithm, computing Schur vectors if desired
        !           515: *
        !           516:       IWRK = ITAU
        !           517:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
        !           518:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
        !           519:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           520:       IF( IERR.NE.0 ) THEN
        !           521:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
        !           522:             INFO = IERR
        !           523:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
        !           524:             INFO = IERR - N
        !           525:          ELSE
        !           526:             INFO = N + 1
        !           527:          END IF
        !           528:          GO TO 50
        !           529:       END IF
        !           530: *
        !           531: *     Sort eigenvalues ALPHA/BETA if desired
        !           532: *
        !           533:       SDIM = 0
        !           534:       IF( WANTST ) THEN
        !           535: *
        !           536: *        Undo scaling on eigenvalues before SELCTGing
        !           537: *
        !           538:          IF( ILASCL ) THEN
        !           539:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
        !           540:      $                   IERR )
        !           541:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
        !           542:      $                   IERR )
        !           543:          END IF
        !           544:          IF( ILBSCL )
        !           545:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           546: *
        !           547: *        Select eigenvalues
        !           548: *
        !           549:          DO 10 I = 1, N
        !           550:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
        !           551:    10    CONTINUE
        !           552: *
        !           553:          CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
        !           554:      $                ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
        !           555:      $                PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
        !           556:      $                IERR )
        !           557:          IF( IERR.EQ.1 )
        !           558:      $      INFO = N + 3
        !           559: *
        !           560:       END IF
        !           561: *
        !           562: *     Apply back-permutation to VSL and VSR
        !           563: *
        !           564:       IF( ILVSL )
        !           565:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
        !           566:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
        !           567: *
        !           568:       IF( ILVSR )
        !           569:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
        !           570:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
        !           571: *
        !           572: *     Check if unscaling would cause over/underflow, if so, rescale
        !           573: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
        !           574: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
        !           575: *
        !           576:       IF( ILASCL ) THEN
        !           577:          DO 20 I = 1, N
        !           578:             IF( ALPHAI( I ).NE.ZERO ) THEN
        !           579:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
        !           580:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
        !           581:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
        !           582:                   BETA( I ) = BETA( I )*WORK( 1 )
        !           583:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
        !           584:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
        !           585:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
        !           586:      $                  ( ANRMTO / ANRM ) .OR.
        !           587:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
        !           588:      $                   THEN
        !           589:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
        !           590:                   BETA( I ) = BETA( I )*WORK( 1 )
        !           591:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
        !           592:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
        !           593:                END IF
        !           594:             END IF
        !           595:    20    CONTINUE
        !           596:       END IF
        !           597: *
        !           598:       IF( ILBSCL ) THEN
        !           599:          DO 30 I = 1, N
        !           600:             IF( ALPHAI( I ).NE.ZERO ) THEN
        !           601:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
        !           602:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
        !           603:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
        !           604:                   BETA( I ) = BETA( I )*WORK( 1 )
        !           605:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
        !           606:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
        !           607:                END IF
        !           608:             END IF
        !           609:    30    CONTINUE
        !           610:       END IF
        !           611: *
        !           612: *     Undo scaling
        !           613: *
        !           614:       IF( ILASCL ) THEN
        !           615:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
        !           616:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
        !           617:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
        !           618:       END IF
        !           619: *
        !           620:       IF( ILBSCL ) THEN
        !           621:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
        !           622:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           623:       END IF
        !           624: *
        !           625:       IF( WANTST ) THEN
        !           626: *
        !           627: *        Check if reordering is correct
        !           628: *
        !           629:          LASTSL = .TRUE.
        !           630:          LST2SL = .TRUE.
        !           631:          SDIM = 0
        !           632:          IP = 0
        !           633:          DO 40 I = 1, N
        !           634:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
        !           635:             IF( ALPHAI( I ).EQ.ZERO ) THEN
        !           636:                IF( CURSL )
        !           637:      $            SDIM = SDIM + 1
        !           638:                IP = 0
        !           639:                IF( CURSL .AND. .NOT.LASTSL )
        !           640:      $            INFO = N + 2
        !           641:             ELSE
        !           642:                IF( IP.EQ.1 ) THEN
        !           643: *
        !           644: *                 Last eigenvalue of conjugate pair
        !           645: *
        !           646:                   CURSL = CURSL .OR. LASTSL
        !           647:                   LASTSL = CURSL
        !           648:                   IF( CURSL )
        !           649:      $               SDIM = SDIM + 2
        !           650:                   IP = -1
        !           651:                   IF( CURSL .AND. .NOT.LST2SL )
        !           652:      $               INFO = N + 2
        !           653:                ELSE
        !           654: *
        !           655: *                 First eigenvalue of conjugate pair
        !           656: *
        !           657:                   IP = 1
        !           658:                END IF
        !           659:             END IF
        !           660:             LST2SL = LASTSL
        !           661:             LASTSL = CURSL
        !           662:    40    CONTINUE
        !           663: *
        !           664:       END IF
        !           665: *
        !           666:    50 CONTINUE
        !           667: *
        !           668:       WORK( 1 ) = LWKOPT
        !           669: *
        !           670:       RETURN
        !           671: *
        !           672: *     End of DGGES3
        !           673: *
        !           674:       END

CVSweb interface <joel.bertrand@systella.fr>