File:  [local] / rpl / lapack / lapack / dgges.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:46 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
    2:      $                  SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
    3:      $                  LDVSR, WORK, LWORK, BWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBVSL, JOBVSR, SORT
   12:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
   13: *     ..
   14: *     .. Array Arguments ..
   15:       LOGICAL            BWORK( * )
   16:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   17:      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
   18:      $                   VSR( LDVSR, * ), WORK( * )
   19: *     ..
   20: *     .. Function Arguments ..
   21:       LOGICAL            SELCTG
   22:       EXTERNAL           SELCTG
   23: *     ..
   24: *
   25: *  Purpose
   26: *  =======
   27: *
   28: *  DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
   29: *  the generalized eigenvalues, the generalized real Schur form (S,T),
   30: *  optionally, the left and/or right matrices of Schur vectors (VSL and
   31: *  VSR). This gives the generalized Schur factorization
   32: *
   33: *           (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
   34: *
   35: *  Optionally, it also orders the eigenvalues so that a selected cluster
   36: *  of eigenvalues appears in the leading diagonal blocks of the upper
   37: *  quasi-triangular matrix S and the upper triangular matrix T.The
   38: *  leading columns of VSL and VSR then form an orthonormal basis for the
   39: *  corresponding left and right eigenspaces (deflating subspaces).
   40: *
   41: *  (If only the generalized eigenvalues are needed, use the driver
   42: *  DGGEV instead, which is faster.)
   43: *
   44: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
   45: *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
   46: *  usually represented as the pair (alpha,beta), as there is a
   47: *  reasonable interpretation for beta=0 or both being zero.
   48: *
   49: *  A pair of matrices (S,T) is in generalized real Schur form if T is
   50: *  upper triangular with non-negative diagonal and S is block upper
   51: *  triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
   52: *  to real generalized eigenvalues, while 2-by-2 blocks of S will be
   53: *  "standardized" by making the corresponding elements of T have the
   54: *  form:
   55: *          [  a  0  ]
   56: *          [  0  b  ]
   57: *
   58: *  and the pair of corresponding 2-by-2 blocks in S and T will have a
   59: *  complex conjugate pair of generalized eigenvalues.
   60: *
   61: *
   62: *  Arguments
   63: *  =========
   64: *
   65: *  JOBVSL  (input) CHARACTER*1
   66: *          = 'N':  do not compute the left Schur vectors;
   67: *          = 'V':  compute the left Schur vectors.
   68: *
   69: *  JOBVSR  (input) CHARACTER*1
   70: *          = 'N':  do not compute the right Schur vectors;
   71: *          = 'V':  compute the right Schur vectors.
   72: *
   73: *  SORT    (input) CHARACTER*1
   74: *          Specifies whether or not to order the eigenvalues on the
   75: *          diagonal of the generalized Schur form.
   76: *          = 'N':  Eigenvalues are not ordered;
   77: *          = 'S':  Eigenvalues are ordered (see SELCTG);
   78: *
   79: *  SELCTG  (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
   80: *          SELCTG must be declared EXTERNAL in the calling subroutine.
   81: *          If SORT = 'N', SELCTG is not referenced.
   82: *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
   83: *          to the top left of the Schur form.
   84: *          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
   85: *          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
   86: *          one of a complex conjugate pair of eigenvalues is selected,
   87: *          then both complex eigenvalues are selected.
   88: *
   89: *          Note that in the ill-conditioned case, a selected complex
   90: *          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
   91: *          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
   92: *          in this case.
   93: *
   94: *  N       (input) INTEGER
   95: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
   96: *
   97: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
   98: *          On entry, the first of the pair of matrices.
   99: *          On exit, A has been overwritten by its generalized Schur
  100: *          form S.
  101: *
  102: *  LDA     (input) INTEGER
  103: *          The leading dimension of A.  LDA >= max(1,N).
  104: *
  105: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
  106: *          On entry, the second of the pair of matrices.
  107: *          On exit, B has been overwritten by its generalized Schur
  108: *          form T.
  109: *
  110: *  LDB     (input) INTEGER
  111: *          The leading dimension of B.  LDB >= max(1,N).
  112: *
  113: *  SDIM    (output) INTEGER
  114: *          If SORT = 'N', SDIM = 0.
  115: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  116: *          for which SELCTG is true.  (Complex conjugate pairs for which
  117: *          SELCTG is true for either eigenvalue count as 2.)
  118: *
  119: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
  120: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
  121: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
  122: *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  123: *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
  124: *          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
  125: *          form (S,T) that would result if the 2-by-2 diagonal blocks of
  126: *          the real Schur form of (A,B) were further reduced to
  127: *          triangular form using 2-by-2 complex unitary transformations.
  128: *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
  129: *          positive, then the j-th and (j+1)-st eigenvalues are a
  130: *          complex conjugate pair, with ALPHAI(j+1) negative.
  131: *
  132: *          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
  133: *          may easily over- or underflow, and BETA(j) may even be zero.
  134: *          Thus, the user should avoid naively computing the ratio.
  135: *          However, ALPHAR and ALPHAI will be always less than and
  136: *          usually comparable with norm(A) in magnitude, and BETA always
  137: *          less than and usually comparable with norm(B).
  138: *
  139: *  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
  140: *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
  141: *          Not referenced if JOBVSL = 'N'.
  142: *
  143: *  LDVSL   (input) INTEGER
  144: *          The leading dimension of the matrix VSL. LDVSL >=1, and
  145: *          if JOBVSL = 'V', LDVSL >= N.
  146: *
  147: *  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
  148: *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
  149: *          Not referenced if JOBVSR = 'N'.
  150: *
  151: *  LDVSR   (input) INTEGER
  152: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
  153: *          if JOBVSR = 'V', LDVSR >= N.
  154: *
  155: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  156: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  157: *
  158: *  LWORK   (input) INTEGER
  159: *          The dimension of the array WORK.
  160: *          If N = 0, LWORK >= 1, else LWORK >= 8*N+16.
  161: *          For good performance , LWORK must generally be larger.
  162: *
  163: *          If LWORK = -1, then a workspace query is assumed; the routine
  164: *          only calculates the optimal size of the WORK array, returns
  165: *          this value as the first entry of the WORK array, and no error
  166: *          message related to LWORK is issued by XERBLA.
  167: *
  168: *  BWORK   (workspace) LOGICAL array, dimension (N)
  169: *          Not referenced if SORT = 'N'.
  170: *
  171: *  INFO    (output) INTEGER
  172: *          = 0:  successful exit
  173: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  174: *          = 1,...,N:
  175: *                The QZ iteration failed.  (A,B) are not in Schur
  176: *                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
  177: *                be correct for j=INFO+1,...,N.
  178: *          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
  179: *                =N+2: after reordering, roundoff changed values of
  180: *                      some complex eigenvalues so that leading
  181: *                      eigenvalues in the Generalized Schur form no
  182: *                      longer satisfy SELCTG=.TRUE.  This could also
  183: *                      be caused due to scaling.
  184: *                =N+3: reordering failed in DTGSEN.
  185: *
  186: *  =====================================================================
  187: *
  188: *     .. Parameters ..
  189:       DOUBLE PRECISION   ZERO, ONE
  190:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  191: *     ..
  192: *     .. Local Scalars ..
  193:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
  194:      $                   LQUERY, LST2SL, WANTST
  195:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
  196:      $                   ILO, IP, IRIGHT, IROWS, ITAU, IWRK, MAXWRK,
  197:      $                   MINWRK
  198:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
  199:      $                   PVSR, SAFMAX, SAFMIN, SMLNUM
  200: *     ..
  201: *     .. Local Arrays ..
  202:       INTEGER            IDUM( 1 )
  203:       DOUBLE PRECISION   DIF( 2 )
  204: *     ..
  205: *     .. External Subroutines ..
  206:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
  207:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
  208:      $                   XERBLA
  209: *     ..
  210: *     .. External Functions ..
  211:       LOGICAL            LSAME
  212:       INTEGER            ILAENV
  213:       DOUBLE PRECISION   DLAMCH, DLANGE
  214:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
  215: *     ..
  216: *     .. Intrinsic Functions ..
  217:       INTRINSIC          ABS, MAX, SQRT
  218: *     ..
  219: *     .. Executable Statements ..
  220: *
  221: *     Decode the input arguments
  222: *
  223:       IF( LSAME( JOBVSL, 'N' ) ) THEN
  224:          IJOBVL = 1
  225:          ILVSL = .FALSE.
  226:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  227:          IJOBVL = 2
  228:          ILVSL = .TRUE.
  229:       ELSE
  230:          IJOBVL = -1
  231:          ILVSL = .FALSE.
  232:       END IF
  233: *
  234:       IF( LSAME( JOBVSR, 'N' ) ) THEN
  235:          IJOBVR = 1
  236:          ILVSR = .FALSE.
  237:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  238:          IJOBVR = 2
  239:          ILVSR = .TRUE.
  240:       ELSE
  241:          IJOBVR = -1
  242:          ILVSR = .FALSE.
  243:       END IF
  244: *
  245:       WANTST = LSAME( SORT, 'S' )
  246: *
  247: *     Test the input arguments
  248: *
  249:       INFO = 0
  250:       LQUERY = ( LWORK.EQ.-1 )
  251:       IF( IJOBVL.LE.0 ) THEN
  252:          INFO = -1
  253:       ELSE IF( IJOBVR.LE.0 ) THEN
  254:          INFO = -2
  255:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  256:          INFO = -3
  257:       ELSE IF( N.LT.0 ) THEN
  258:          INFO = -5
  259:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  260:          INFO = -7
  261:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  262:          INFO = -9
  263:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  264:          INFO = -15
  265:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  266:          INFO = -17
  267:       END IF
  268: *
  269: *     Compute workspace
  270: *      (Note: Comments in the code beginning "Workspace:" describe the
  271: *       minimal amount of workspace needed at that point in the code,
  272: *       as well as the preferred amount for good performance.
  273: *       NB refers to the optimal block size for the immediately
  274: *       following subroutine, as returned by ILAENV.)
  275: *
  276:       IF( INFO.EQ.0 ) THEN
  277:          IF( N.GT.0 )THEN
  278:             MINWRK = MAX( 8*N, 6*N + 16 )
  279:             MAXWRK = MINWRK - N +
  280:      $               N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 )
  281:             MAXWRK = MAX( MAXWRK, MINWRK - N +
  282:      $                    N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, -1 ) )
  283:             IF( ILVSL ) THEN
  284:                MAXWRK = MAX( MAXWRK, MINWRK - N +
  285:      $                       N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
  286:             END IF
  287:          ELSE
  288:             MINWRK = 1
  289:             MAXWRK = 1
  290:          END IF
  291:          WORK( 1 ) = MAXWRK
  292: *
  293:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
  294:      $      INFO = -19
  295:       END IF
  296: *
  297:       IF( INFO.NE.0 ) THEN
  298:          CALL XERBLA( 'DGGES ', -INFO )
  299:          RETURN
  300:       ELSE IF( LQUERY ) THEN
  301:          RETURN
  302:       END IF
  303: *
  304: *     Quick return if possible
  305: *
  306:       IF( N.EQ.0 ) THEN
  307:          SDIM = 0
  308:          RETURN
  309:       END IF
  310: *
  311: *     Get machine constants
  312: *
  313:       EPS = DLAMCH( 'P' )
  314:       SAFMIN = DLAMCH( 'S' )
  315:       SAFMAX = ONE / SAFMIN
  316:       CALL DLABAD( SAFMIN, SAFMAX )
  317:       SMLNUM = SQRT( SAFMIN ) / EPS
  318:       BIGNUM = ONE / SMLNUM
  319: *
  320: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  321: *
  322:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
  323:       ILASCL = .FALSE.
  324:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  325:          ANRMTO = SMLNUM
  326:          ILASCL = .TRUE.
  327:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  328:          ANRMTO = BIGNUM
  329:          ILASCL = .TRUE.
  330:       END IF
  331:       IF( ILASCL )
  332:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  333: *
  334: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  335: *
  336:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
  337:       ILBSCL = .FALSE.
  338:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  339:          BNRMTO = SMLNUM
  340:          ILBSCL = .TRUE.
  341:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  342:          BNRMTO = BIGNUM
  343:          ILBSCL = .TRUE.
  344:       END IF
  345:       IF( ILBSCL )
  346:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  347: *
  348: *     Permute the matrix to make it more nearly triangular
  349: *     (Workspace: need 6*N + 2*N space for storing balancing factors)
  350: *
  351:       ILEFT = 1
  352:       IRIGHT = N + 1
  353:       IWRK = IRIGHT + N
  354:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
  355:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
  356: *
  357: *     Reduce B to triangular form (QR decomposition of B)
  358: *     (Workspace: need N, prefer N*NB)
  359: *
  360:       IROWS = IHI + 1 - ILO
  361:       ICOLS = N + 1 - ILO
  362:       ITAU = IWRK
  363:       IWRK = ITAU + IROWS
  364:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  365:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  366: *
  367: *     Apply the orthogonal transformation to matrix A
  368: *     (Workspace: need N, prefer N*NB)
  369: *
  370:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  371:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  372:      $             LWORK+1-IWRK, IERR )
  373: *
  374: *     Initialize VSL
  375: *     (Workspace: need N, prefer N*NB)
  376: *
  377:       IF( ILVSL ) THEN
  378:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
  379:          IF( IROWS.GT.1 ) THEN
  380:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  381:      $                   VSL( ILO+1, ILO ), LDVSL )
  382:          END IF
  383:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  384:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  385:       END IF
  386: *
  387: *     Initialize VSR
  388: *
  389:       IF( ILVSR )
  390:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
  391: *
  392: *     Reduce to generalized Hessenberg form
  393: *     (Workspace: none needed)
  394: *
  395:       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  396:      $             LDVSL, VSR, LDVSR, IERR )
  397: *
  398: *     Perform QZ algorithm, computing Schur vectors if desired
  399: *     (Workspace: need N)
  400: *
  401:       IWRK = ITAU
  402:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  403:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
  404:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  405:       IF( IERR.NE.0 ) THEN
  406:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  407:             INFO = IERR
  408:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  409:             INFO = IERR - N
  410:          ELSE
  411:             INFO = N + 1
  412:          END IF
  413:          GO TO 50
  414:       END IF
  415: *
  416: *     Sort eigenvalues ALPHA/BETA if desired
  417: *     (Workspace: need 4*N+16 )
  418: *
  419:       SDIM = 0
  420:       IF( WANTST ) THEN
  421: *
  422: *        Undo scaling on eigenvalues before SELCTGing
  423: *
  424:          IF( ILASCL ) THEN
  425:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
  426:      $                   IERR )
  427:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
  428:      $                   IERR )
  429:          END IF
  430:          IF( ILBSCL )
  431:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  432: *
  433: *        Select eigenvalues
  434: *
  435:          DO 10 I = 1, N
  436:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
  437:    10    CONTINUE
  438: *
  439:          CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
  440:      $                ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
  441:      $                PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
  442:      $                IERR )
  443:          IF( IERR.EQ.1 )
  444:      $      INFO = N + 3
  445: *
  446:       END IF
  447: *
  448: *     Apply back-permutation to VSL and VSR
  449: *     (Workspace: none needed)
  450: *
  451:       IF( ILVSL )
  452:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
  453:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
  454: *
  455:       IF( ILVSR )
  456:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
  457:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
  458: *
  459: *     Check if unscaling would cause over/underflow, if so, rescale
  460: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
  461: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
  462: *
  463:       IF( ILASCL ) THEN
  464:          DO 20 I = 1, N
  465:             IF( ALPHAI( I ).NE.ZERO ) THEN
  466:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
  467:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
  468:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
  469:                   BETA( I ) = BETA( I )*WORK( 1 )
  470:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
  471:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
  472:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
  473:      $                  ( ANRMTO / ANRM ) .OR.
  474:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
  475:      $                   THEN
  476:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
  477:                   BETA( I ) = BETA( I )*WORK( 1 )
  478:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
  479:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
  480:                END IF
  481:             END IF
  482:    20    CONTINUE
  483:       END IF
  484: *
  485:       IF( ILBSCL ) THEN
  486:          DO 30 I = 1, N
  487:             IF( ALPHAI( I ).NE.ZERO ) THEN
  488:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
  489:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
  490:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
  491:                   BETA( I ) = BETA( I )*WORK( 1 )
  492:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
  493:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
  494:                END IF
  495:             END IF
  496:    30    CONTINUE
  497:       END IF
  498: *
  499: *     Undo scaling
  500: *
  501:       IF( ILASCL ) THEN
  502:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
  503:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
  504:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
  505:       END IF
  506: *
  507:       IF( ILBSCL ) THEN
  508:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
  509:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  510:       END IF
  511: *
  512:       IF( WANTST ) THEN
  513: *
  514: *        Check if reordering is correct
  515: *
  516:          LASTSL = .TRUE.
  517:          LST2SL = .TRUE.
  518:          SDIM = 0
  519:          IP = 0
  520:          DO 40 I = 1, N
  521:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
  522:             IF( ALPHAI( I ).EQ.ZERO ) THEN
  523:                IF( CURSL )
  524:      $            SDIM = SDIM + 1
  525:                IP = 0
  526:                IF( CURSL .AND. .NOT.LASTSL )
  527:      $            INFO = N + 2
  528:             ELSE
  529:                IF( IP.EQ.1 ) THEN
  530: *
  531: *                 Last eigenvalue of conjugate pair
  532: *
  533:                   CURSL = CURSL .OR. LASTSL
  534:                   LASTSL = CURSL
  535:                   IF( CURSL )
  536:      $               SDIM = SDIM + 2
  537:                   IP = -1
  538:                   IF( CURSL .AND. .NOT.LST2SL )
  539:      $               INFO = N + 2
  540:                ELSE
  541: *
  542: *                 First eigenvalue of conjugate pair
  543: *
  544:                   IP = 1
  545:                END IF
  546:             END IF
  547:             LST2SL = LASTSL
  548:             LASTSL = CURSL
  549:    40    CONTINUE
  550: *
  551:       END IF
  552: *
  553:    50 CONTINUE
  554: *
  555:       WORK( 1 ) = MAXWRK
  556: *
  557:       RETURN
  558: *
  559: *     End of DGGES
  560: *
  561:       END

CVSweb interface <joel.bertrand@systella.fr>