Annotation of rpl/lapack/lapack/dgges.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
                      2:      $                  SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
                      3:      $                  LDVSR, WORK, LWORK, BWORK, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBVSL, JOBVSR, SORT
                     12:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       LOGICAL            BWORK( * )
                     16:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                     17:      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
                     18:      $                   VSR( LDVSR, * ), WORK( * )
                     19: *     ..
                     20: *     .. Function Arguments ..
                     21:       LOGICAL            SELCTG
                     22:       EXTERNAL           SELCTG
                     23: *     ..
                     24: *
                     25: *  Purpose
                     26: *  =======
                     27: *
                     28: *  DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
                     29: *  the generalized eigenvalues, the generalized real Schur form (S,T),
                     30: *  optionally, the left and/or right matrices of Schur vectors (VSL and
                     31: *  VSR). This gives the generalized Schur factorization
                     32: *
                     33: *           (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
                     34: *
                     35: *  Optionally, it also orders the eigenvalues so that a selected cluster
                     36: *  of eigenvalues appears in the leading diagonal blocks of the upper
                     37: *  quasi-triangular matrix S and the upper triangular matrix T.The
                     38: *  leading columns of VSL and VSR then form an orthonormal basis for the
                     39: *  corresponding left and right eigenspaces (deflating subspaces).
                     40: *
                     41: *  (If only the generalized eigenvalues are needed, use the driver
                     42: *  DGGEV instead, which is faster.)
                     43: *
                     44: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
                     45: *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
                     46: *  usually represented as the pair (alpha,beta), as there is a
                     47: *  reasonable interpretation for beta=0 or both being zero.
                     48: *
                     49: *  A pair of matrices (S,T) is in generalized real Schur form if T is
                     50: *  upper triangular with non-negative diagonal and S is block upper
                     51: *  triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
                     52: *  to real generalized eigenvalues, while 2-by-2 blocks of S will be
                     53: *  "standardized" by making the corresponding elements of T have the
                     54: *  form:
                     55: *          [  a  0  ]
                     56: *          [  0  b  ]
                     57: *
                     58: *  and the pair of corresponding 2-by-2 blocks in S and T will have a
                     59: *  complex conjugate pair of generalized eigenvalues.
                     60: *
                     61: *
                     62: *  Arguments
                     63: *  =========
                     64: *
                     65: *  JOBVSL  (input) CHARACTER*1
                     66: *          = 'N':  do not compute the left Schur vectors;
                     67: *          = 'V':  compute the left Schur vectors.
                     68: *
                     69: *  JOBVSR  (input) CHARACTER*1
                     70: *          = 'N':  do not compute the right Schur vectors;
                     71: *          = 'V':  compute the right Schur vectors.
                     72: *
                     73: *  SORT    (input) CHARACTER*1
                     74: *          Specifies whether or not to order the eigenvalues on the
                     75: *          diagonal of the generalized Schur form.
                     76: *          = 'N':  Eigenvalues are not ordered;
                     77: *          = 'S':  Eigenvalues are ordered (see SELCTG);
                     78: *
                     79: *  SELCTG  (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
                     80: *          SELCTG must be declared EXTERNAL in the calling subroutine.
                     81: *          If SORT = 'N', SELCTG is not referenced.
                     82: *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
                     83: *          to the top left of the Schur form.
                     84: *          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
                     85: *          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
                     86: *          one of a complex conjugate pair of eigenvalues is selected,
                     87: *          then both complex eigenvalues are selected.
                     88: *
                     89: *          Note that in the ill-conditioned case, a selected complex
                     90: *          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
                     91: *          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
                     92: *          in this case.
                     93: *
                     94: *  N       (input) INTEGER
                     95: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
                     96: *
                     97: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                     98: *          On entry, the first of the pair of matrices.
                     99: *          On exit, A has been overwritten by its generalized Schur
                    100: *          form S.
                    101: *
                    102: *  LDA     (input) INTEGER
                    103: *          The leading dimension of A.  LDA >= max(1,N).
                    104: *
                    105: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
                    106: *          On entry, the second of the pair of matrices.
                    107: *          On exit, B has been overwritten by its generalized Schur
                    108: *          form T.
                    109: *
                    110: *  LDB     (input) INTEGER
                    111: *          The leading dimension of B.  LDB >= max(1,N).
                    112: *
                    113: *  SDIM    (output) INTEGER
                    114: *          If SORT = 'N', SDIM = 0.
                    115: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    116: *          for which SELCTG is true.  (Complex conjugate pairs for which
                    117: *          SELCTG is true for either eigenvalue count as 2.)
                    118: *
                    119: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
                    120: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
                    121: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
                    122: *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
                    123: *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
                    124: *          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
                    125: *          form (S,T) that would result if the 2-by-2 diagonal blocks of
                    126: *          the real Schur form of (A,B) were further reduced to
                    127: *          triangular form using 2-by-2 complex unitary transformations.
                    128: *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
                    129: *          positive, then the j-th and (j+1)-st eigenvalues are a
                    130: *          complex conjugate pair, with ALPHAI(j+1) negative.
                    131: *
                    132: *          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
                    133: *          may easily over- or underflow, and BETA(j) may even be zero.
                    134: *          Thus, the user should avoid naively computing the ratio.
                    135: *          However, ALPHAR and ALPHAI will be always less than and
                    136: *          usually comparable with norm(A) in magnitude, and BETA always
                    137: *          less than and usually comparable with norm(B).
                    138: *
                    139: *  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
                    140: *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
                    141: *          Not referenced if JOBVSL = 'N'.
                    142: *
                    143: *  LDVSL   (input) INTEGER
                    144: *          The leading dimension of the matrix VSL. LDVSL >=1, and
                    145: *          if JOBVSL = 'V', LDVSL >= N.
                    146: *
                    147: *  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
                    148: *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
                    149: *          Not referenced if JOBVSR = 'N'.
                    150: *
                    151: *  LDVSR   (input) INTEGER
                    152: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
                    153: *          if JOBVSR = 'V', LDVSR >= N.
                    154: *
                    155: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    156: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    157: *
                    158: *  LWORK   (input) INTEGER
                    159: *          The dimension of the array WORK.
                    160: *          If N = 0, LWORK >= 1, else LWORK >= 8*N+16.
                    161: *          For good performance , LWORK must generally be larger.
                    162: *
                    163: *          If LWORK = -1, then a workspace query is assumed; the routine
                    164: *          only calculates the optimal size of the WORK array, returns
                    165: *          this value as the first entry of the WORK array, and no error
                    166: *          message related to LWORK is issued by XERBLA.
                    167: *
                    168: *  BWORK   (workspace) LOGICAL array, dimension (N)
                    169: *          Not referenced if SORT = 'N'.
                    170: *
                    171: *  INFO    (output) INTEGER
                    172: *          = 0:  successful exit
                    173: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    174: *          = 1,...,N:
                    175: *                The QZ iteration failed.  (A,B) are not in Schur
                    176: *                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
                    177: *                be correct for j=INFO+1,...,N.
                    178: *          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
                    179: *                =N+2: after reordering, roundoff changed values of
                    180: *                      some complex eigenvalues so that leading
                    181: *                      eigenvalues in the Generalized Schur form no
                    182: *                      longer satisfy SELCTG=.TRUE.  This could also
                    183: *                      be caused due to scaling.
                    184: *                =N+3: reordering failed in DTGSEN.
                    185: *
                    186: *  =====================================================================
                    187: *
                    188: *     .. Parameters ..
                    189:       DOUBLE PRECISION   ZERO, ONE
                    190:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    191: *     ..
                    192: *     .. Local Scalars ..
                    193:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
                    194:      $                   LQUERY, LST2SL, WANTST
                    195:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
                    196:      $                   ILO, IP, IRIGHT, IROWS, ITAU, IWRK, MAXWRK,
                    197:      $                   MINWRK
                    198:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
                    199:      $                   PVSR, SAFMAX, SAFMIN, SMLNUM
                    200: *     ..
                    201: *     .. Local Arrays ..
                    202:       INTEGER            IDUM( 1 )
                    203:       DOUBLE PRECISION   DIF( 2 )
                    204: *     ..
                    205: *     .. External Subroutines ..
                    206:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
                    207:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
                    208:      $                   XERBLA
                    209: *     ..
                    210: *     .. External Functions ..
                    211:       LOGICAL            LSAME
                    212:       INTEGER            ILAENV
                    213:       DOUBLE PRECISION   DLAMCH, DLANGE
                    214:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    215: *     ..
                    216: *     .. Intrinsic Functions ..
                    217:       INTRINSIC          ABS, MAX, SQRT
                    218: *     ..
                    219: *     .. Executable Statements ..
                    220: *
                    221: *     Decode the input arguments
                    222: *
                    223:       IF( LSAME( JOBVSL, 'N' ) ) THEN
                    224:          IJOBVL = 1
                    225:          ILVSL = .FALSE.
                    226:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
                    227:          IJOBVL = 2
                    228:          ILVSL = .TRUE.
                    229:       ELSE
                    230:          IJOBVL = -1
                    231:          ILVSL = .FALSE.
                    232:       END IF
                    233: *
                    234:       IF( LSAME( JOBVSR, 'N' ) ) THEN
                    235:          IJOBVR = 1
                    236:          ILVSR = .FALSE.
                    237:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
                    238:          IJOBVR = 2
                    239:          ILVSR = .TRUE.
                    240:       ELSE
                    241:          IJOBVR = -1
                    242:          ILVSR = .FALSE.
                    243:       END IF
                    244: *
                    245:       WANTST = LSAME( SORT, 'S' )
                    246: *
                    247: *     Test the input arguments
                    248: *
                    249:       INFO = 0
                    250:       LQUERY = ( LWORK.EQ.-1 )
                    251:       IF( IJOBVL.LE.0 ) THEN
                    252:          INFO = -1
                    253:       ELSE IF( IJOBVR.LE.0 ) THEN
                    254:          INFO = -2
                    255:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    256:          INFO = -3
                    257:       ELSE IF( N.LT.0 ) THEN
                    258:          INFO = -5
                    259:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    260:          INFO = -7
                    261:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    262:          INFO = -9
                    263:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
                    264:          INFO = -15
                    265:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
                    266:          INFO = -17
                    267:       END IF
                    268: *
                    269: *     Compute workspace
                    270: *      (Note: Comments in the code beginning "Workspace:" describe the
                    271: *       minimal amount of workspace needed at that point in the code,
                    272: *       as well as the preferred amount for good performance.
                    273: *       NB refers to the optimal block size for the immediately
                    274: *       following subroutine, as returned by ILAENV.)
                    275: *
                    276:       IF( INFO.EQ.0 ) THEN
                    277:          IF( N.GT.0 )THEN
                    278:             MINWRK = MAX( 8*N, 6*N + 16 )
                    279:             MAXWRK = MINWRK - N +
                    280:      $               N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 )
                    281:             MAXWRK = MAX( MAXWRK, MINWRK - N +
                    282:      $                    N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, -1 ) )
                    283:             IF( ILVSL ) THEN
                    284:                MAXWRK = MAX( MAXWRK, MINWRK - N +
                    285:      $                       N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
                    286:             END IF
                    287:          ELSE
                    288:             MINWRK = 1
                    289:             MAXWRK = 1
                    290:          END IF
                    291:          WORK( 1 ) = MAXWRK
                    292: *
                    293:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
                    294:      $      INFO = -19
                    295:       END IF
                    296: *
                    297:       IF( INFO.NE.0 ) THEN
                    298:          CALL XERBLA( 'DGGES ', -INFO )
                    299:          RETURN
                    300:       ELSE IF( LQUERY ) THEN
                    301:          RETURN
                    302:       END IF
                    303: *
                    304: *     Quick return if possible
                    305: *
                    306:       IF( N.EQ.0 ) THEN
                    307:          SDIM = 0
                    308:          RETURN
                    309:       END IF
                    310: *
                    311: *     Get machine constants
                    312: *
                    313:       EPS = DLAMCH( 'P' )
                    314:       SAFMIN = DLAMCH( 'S' )
                    315:       SAFMAX = ONE / SAFMIN
                    316:       CALL DLABAD( SAFMIN, SAFMAX )
                    317:       SMLNUM = SQRT( SAFMIN ) / EPS
                    318:       BIGNUM = ONE / SMLNUM
                    319: *
                    320: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    321: *
                    322:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    323:       ILASCL = .FALSE.
                    324:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    325:          ANRMTO = SMLNUM
                    326:          ILASCL = .TRUE.
                    327:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    328:          ANRMTO = BIGNUM
                    329:          ILASCL = .TRUE.
                    330:       END IF
                    331:       IF( ILASCL )
                    332:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    333: *
                    334: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    335: *
                    336:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    337:       ILBSCL = .FALSE.
                    338:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    339:          BNRMTO = SMLNUM
                    340:          ILBSCL = .TRUE.
                    341:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    342:          BNRMTO = BIGNUM
                    343:          ILBSCL = .TRUE.
                    344:       END IF
                    345:       IF( ILBSCL )
                    346:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    347: *
                    348: *     Permute the matrix to make it more nearly triangular
                    349: *     (Workspace: need 6*N + 2*N space for storing balancing factors)
                    350: *
                    351:       ILEFT = 1
                    352:       IRIGHT = N + 1
                    353:       IWRK = IRIGHT + N
                    354:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
                    355:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
                    356: *
                    357: *     Reduce B to triangular form (QR decomposition of B)
                    358: *     (Workspace: need N, prefer N*NB)
                    359: *
                    360:       IROWS = IHI + 1 - ILO
                    361:       ICOLS = N + 1 - ILO
                    362:       ITAU = IWRK
                    363:       IWRK = ITAU + IROWS
                    364:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    365:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    366: *
                    367: *     Apply the orthogonal transformation to matrix A
                    368: *     (Workspace: need N, prefer N*NB)
                    369: *
                    370:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    371:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    372:      $             LWORK+1-IWRK, IERR )
                    373: *
                    374: *     Initialize VSL
                    375: *     (Workspace: need N, prefer N*NB)
                    376: *
                    377:       IF( ILVSL ) THEN
                    378:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
                    379:          IF( IROWS.GT.1 ) THEN
                    380:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    381:      $                   VSL( ILO+1, ILO ), LDVSL )
                    382:          END IF
                    383:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
                    384:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    385:       END IF
                    386: *
                    387: *     Initialize VSR
                    388: *
                    389:       IF( ILVSR )
                    390:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
                    391: *
                    392: *     Reduce to generalized Hessenberg form
                    393: *     (Workspace: none needed)
                    394: *
                    395:       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
                    396:      $             LDVSL, VSR, LDVSR, IERR )
                    397: *
                    398: *     Perform QZ algorithm, computing Schur vectors if desired
                    399: *     (Workspace: need N)
                    400: *
                    401:       IWRK = ITAU
                    402:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
                    403:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
                    404:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    405:       IF( IERR.NE.0 ) THEN
                    406:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    407:             INFO = IERR
                    408:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    409:             INFO = IERR - N
                    410:          ELSE
                    411:             INFO = N + 1
                    412:          END IF
                    413:          GO TO 50
                    414:       END IF
                    415: *
                    416: *     Sort eigenvalues ALPHA/BETA if desired
                    417: *     (Workspace: need 4*N+16 )
                    418: *
                    419:       SDIM = 0
                    420:       IF( WANTST ) THEN
                    421: *
                    422: *        Undo scaling on eigenvalues before SELCTGing
                    423: *
                    424:          IF( ILASCL ) THEN
                    425:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
                    426:      $                   IERR )
                    427:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
                    428:      $                   IERR )
                    429:          END IF
                    430:          IF( ILBSCL )
                    431:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    432: *
                    433: *        Select eigenvalues
                    434: *
                    435:          DO 10 I = 1, N
                    436:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    437:    10    CONTINUE
                    438: *
                    439:          CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
                    440:      $                ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
                    441:      $                PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
                    442:      $                IERR )
                    443:          IF( IERR.EQ.1 )
                    444:      $      INFO = N + 3
                    445: *
                    446:       END IF
                    447: *
                    448: *     Apply back-permutation to VSL and VSR
                    449: *     (Workspace: none needed)
                    450: *
                    451:       IF( ILVSL )
                    452:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
                    453:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
                    454: *
                    455:       IF( ILVSR )
                    456:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
                    457:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
                    458: *
                    459: *     Check if unscaling would cause over/underflow, if so, rescale
                    460: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
                    461: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
                    462: *
                    463:       IF( ILASCL ) THEN
                    464:          DO 20 I = 1, N
                    465:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    466:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
                    467:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
                    468:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
                    469:                   BETA( I ) = BETA( I )*WORK( 1 )
                    470:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    471:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    472:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
                    473:      $                  ( ANRMTO / ANRM ) .OR.
                    474:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
                    475:      $                   THEN
                    476:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
                    477:                   BETA( I ) = BETA( I )*WORK( 1 )
                    478:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    479:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    480:                END IF
                    481:             END IF
                    482:    20    CONTINUE
                    483:       END IF
                    484: *
                    485:       IF( ILBSCL ) THEN
                    486:          DO 30 I = 1, N
                    487:             IF( ALPHAI( I ).NE.ZERO ) THEN
                    488:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
                    489:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
                    490:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
                    491:                   BETA( I ) = BETA( I )*WORK( 1 )
                    492:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                    493:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                    494:                END IF
                    495:             END IF
                    496:    30    CONTINUE
                    497:       END IF
                    498: *
                    499: *     Undo scaling
                    500: *
                    501:       IF( ILASCL ) THEN
                    502:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
                    503:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
                    504:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
                    505:       END IF
                    506: *
                    507:       IF( ILBSCL ) THEN
                    508:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
                    509:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    510:       END IF
                    511: *
                    512:       IF( WANTST ) THEN
                    513: *
                    514: *        Check if reordering is correct
                    515: *
                    516:          LASTSL = .TRUE.
                    517:          LST2SL = .TRUE.
                    518:          SDIM = 0
                    519:          IP = 0
                    520:          DO 40 I = 1, N
                    521:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
                    522:             IF( ALPHAI( I ).EQ.ZERO ) THEN
                    523:                IF( CURSL )
                    524:      $            SDIM = SDIM + 1
                    525:                IP = 0
                    526:                IF( CURSL .AND. .NOT.LASTSL )
                    527:      $            INFO = N + 2
                    528:             ELSE
                    529:                IF( IP.EQ.1 ) THEN
                    530: *
                    531: *                 Last eigenvalue of conjugate pair
                    532: *
                    533:                   CURSL = CURSL .OR. LASTSL
                    534:                   LASTSL = CURSL
                    535:                   IF( CURSL )
                    536:      $               SDIM = SDIM + 2
                    537:                   IP = -1
                    538:                   IF( CURSL .AND. .NOT.LST2SL )
                    539:      $               INFO = N + 2
                    540:                ELSE
                    541: *
                    542: *                 First eigenvalue of conjugate pair
                    543: *
                    544:                   IP = 1
                    545:                END IF
                    546:             END IF
                    547:             LST2SL = LASTSL
                    548:             LASTSL = CURSL
                    549:    40    CONTINUE
                    550: *
                    551:       END IF
                    552: *
                    553:    50 CONTINUE
                    554: *
                    555:       WORK( 1 ) = MAXWRK
                    556: *
                    557:       RETURN
                    558: *
                    559: *     End of DGGES
                    560: *
                    561:       END

CVSweb interface <joel.bertrand@systella.fr>