Annotation of rpl/lapack/lapack/dgges.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
        !             2:      $                  SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
        !             3:      $                  LDVSR, WORK, LWORK, BWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBVSL, JOBVSR, SORT
        !            12:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       LOGICAL            BWORK( * )
        !            16:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !            17:      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
        !            18:      $                   VSR( LDVSR, * ), WORK( * )
        !            19: *     ..
        !            20: *     .. Function Arguments ..
        !            21:       LOGICAL            SELCTG
        !            22:       EXTERNAL           SELCTG
        !            23: *     ..
        !            24: *
        !            25: *  Purpose
        !            26: *  =======
        !            27: *
        !            28: *  DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
        !            29: *  the generalized eigenvalues, the generalized real Schur form (S,T),
        !            30: *  optionally, the left and/or right matrices of Schur vectors (VSL and
        !            31: *  VSR). This gives the generalized Schur factorization
        !            32: *
        !            33: *           (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
        !            34: *
        !            35: *  Optionally, it also orders the eigenvalues so that a selected cluster
        !            36: *  of eigenvalues appears in the leading diagonal blocks of the upper
        !            37: *  quasi-triangular matrix S and the upper triangular matrix T.The
        !            38: *  leading columns of VSL and VSR then form an orthonormal basis for the
        !            39: *  corresponding left and right eigenspaces (deflating subspaces).
        !            40: *
        !            41: *  (If only the generalized eigenvalues are needed, use the driver
        !            42: *  DGGEV instead, which is faster.)
        !            43: *
        !            44: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
        !            45: *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
        !            46: *  usually represented as the pair (alpha,beta), as there is a
        !            47: *  reasonable interpretation for beta=0 or both being zero.
        !            48: *
        !            49: *  A pair of matrices (S,T) is in generalized real Schur form if T is
        !            50: *  upper triangular with non-negative diagonal and S is block upper
        !            51: *  triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
        !            52: *  to real generalized eigenvalues, while 2-by-2 blocks of S will be
        !            53: *  "standardized" by making the corresponding elements of T have the
        !            54: *  form:
        !            55: *          [  a  0  ]
        !            56: *          [  0  b  ]
        !            57: *
        !            58: *  and the pair of corresponding 2-by-2 blocks in S and T will have a
        !            59: *  complex conjugate pair of generalized eigenvalues.
        !            60: *
        !            61: *
        !            62: *  Arguments
        !            63: *  =========
        !            64: *
        !            65: *  JOBVSL  (input) CHARACTER*1
        !            66: *          = 'N':  do not compute the left Schur vectors;
        !            67: *          = 'V':  compute the left Schur vectors.
        !            68: *
        !            69: *  JOBVSR  (input) CHARACTER*1
        !            70: *          = 'N':  do not compute the right Schur vectors;
        !            71: *          = 'V':  compute the right Schur vectors.
        !            72: *
        !            73: *  SORT    (input) CHARACTER*1
        !            74: *          Specifies whether or not to order the eigenvalues on the
        !            75: *          diagonal of the generalized Schur form.
        !            76: *          = 'N':  Eigenvalues are not ordered;
        !            77: *          = 'S':  Eigenvalues are ordered (see SELCTG);
        !            78: *
        !            79: *  SELCTG  (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
        !            80: *          SELCTG must be declared EXTERNAL in the calling subroutine.
        !            81: *          If SORT = 'N', SELCTG is not referenced.
        !            82: *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
        !            83: *          to the top left of the Schur form.
        !            84: *          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
        !            85: *          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
        !            86: *          one of a complex conjugate pair of eigenvalues is selected,
        !            87: *          then both complex eigenvalues are selected.
        !            88: *
        !            89: *          Note that in the ill-conditioned case, a selected complex
        !            90: *          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
        !            91: *          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
        !            92: *          in this case.
        !            93: *
        !            94: *  N       (input) INTEGER
        !            95: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
        !            96: *
        !            97: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
        !            98: *          On entry, the first of the pair of matrices.
        !            99: *          On exit, A has been overwritten by its generalized Schur
        !           100: *          form S.
        !           101: *
        !           102: *  LDA     (input) INTEGER
        !           103: *          The leading dimension of A.  LDA >= max(1,N).
        !           104: *
        !           105: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
        !           106: *          On entry, the second of the pair of matrices.
        !           107: *          On exit, B has been overwritten by its generalized Schur
        !           108: *          form T.
        !           109: *
        !           110: *  LDB     (input) INTEGER
        !           111: *          The leading dimension of B.  LDB >= max(1,N).
        !           112: *
        !           113: *  SDIM    (output) INTEGER
        !           114: *          If SORT = 'N', SDIM = 0.
        !           115: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
        !           116: *          for which SELCTG is true.  (Complex conjugate pairs for which
        !           117: *          SELCTG is true for either eigenvalue count as 2.)
        !           118: *
        !           119: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
        !           120: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
        !           121: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
        !           122: *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
        !           123: *          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
        !           124: *          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
        !           125: *          form (S,T) that would result if the 2-by-2 diagonal blocks of
        !           126: *          the real Schur form of (A,B) were further reduced to
        !           127: *          triangular form using 2-by-2 complex unitary transformations.
        !           128: *          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
        !           129: *          positive, then the j-th and (j+1)-st eigenvalues are a
        !           130: *          complex conjugate pair, with ALPHAI(j+1) negative.
        !           131: *
        !           132: *          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
        !           133: *          may easily over- or underflow, and BETA(j) may even be zero.
        !           134: *          Thus, the user should avoid naively computing the ratio.
        !           135: *          However, ALPHAR and ALPHAI will be always less than and
        !           136: *          usually comparable with norm(A) in magnitude, and BETA always
        !           137: *          less than and usually comparable with norm(B).
        !           138: *
        !           139: *  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
        !           140: *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
        !           141: *          Not referenced if JOBVSL = 'N'.
        !           142: *
        !           143: *  LDVSL   (input) INTEGER
        !           144: *          The leading dimension of the matrix VSL. LDVSL >=1, and
        !           145: *          if JOBVSL = 'V', LDVSL >= N.
        !           146: *
        !           147: *  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
        !           148: *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
        !           149: *          Not referenced if JOBVSR = 'N'.
        !           150: *
        !           151: *  LDVSR   (input) INTEGER
        !           152: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
        !           153: *          if JOBVSR = 'V', LDVSR >= N.
        !           154: *
        !           155: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           156: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           157: *
        !           158: *  LWORK   (input) INTEGER
        !           159: *          The dimension of the array WORK.
        !           160: *          If N = 0, LWORK >= 1, else LWORK >= 8*N+16.
        !           161: *          For good performance , LWORK must generally be larger.
        !           162: *
        !           163: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           164: *          only calculates the optimal size of the WORK array, returns
        !           165: *          this value as the first entry of the WORK array, and no error
        !           166: *          message related to LWORK is issued by XERBLA.
        !           167: *
        !           168: *  BWORK   (workspace) LOGICAL array, dimension (N)
        !           169: *          Not referenced if SORT = 'N'.
        !           170: *
        !           171: *  INFO    (output) INTEGER
        !           172: *          = 0:  successful exit
        !           173: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           174: *          = 1,...,N:
        !           175: *                The QZ iteration failed.  (A,B) are not in Schur
        !           176: *                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
        !           177: *                be correct for j=INFO+1,...,N.
        !           178: *          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
        !           179: *                =N+2: after reordering, roundoff changed values of
        !           180: *                      some complex eigenvalues so that leading
        !           181: *                      eigenvalues in the Generalized Schur form no
        !           182: *                      longer satisfy SELCTG=.TRUE.  This could also
        !           183: *                      be caused due to scaling.
        !           184: *                =N+3: reordering failed in DTGSEN.
        !           185: *
        !           186: *  =====================================================================
        !           187: *
        !           188: *     .. Parameters ..
        !           189:       DOUBLE PRECISION   ZERO, ONE
        !           190:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           191: *     ..
        !           192: *     .. Local Scalars ..
        !           193:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
        !           194:      $                   LQUERY, LST2SL, WANTST
        !           195:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
        !           196:      $                   ILO, IP, IRIGHT, IROWS, ITAU, IWRK, MAXWRK,
        !           197:      $                   MINWRK
        !           198:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
        !           199:      $                   PVSR, SAFMAX, SAFMIN, SMLNUM
        !           200: *     ..
        !           201: *     .. Local Arrays ..
        !           202:       INTEGER            IDUM( 1 )
        !           203:       DOUBLE PRECISION   DIF( 2 )
        !           204: *     ..
        !           205: *     .. External Subroutines ..
        !           206:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
        !           207:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
        !           208:      $                   XERBLA
        !           209: *     ..
        !           210: *     .. External Functions ..
        !           211:       LOGICAL            LSAME
        !           212:       INTEGER            ILAENV
        !           213:       DOUBLE PRECISION   DLAMCH, DLANGE
        !           214:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
        !           215: *     ..
        !           216: *     .. Intrinsic Functions ..
        !           217:       INTRINSIC          ABS, MAX, SQRT
        !           218: *     ..
        !           219: *     .. Executable Statements ..
        !           220: *
        !           221: *     Decode the input arguments
        !           222: *
        !           223:       IF( LSAME( JOBVSL, 'N' ) ) THEN
        !           224:          IJOBVL = 1
        !           225:          ILVSL = .FALSE.
        !           226:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
        !           227:          IJOBVL = 2
        !           228:          ILVSL = .TRUE.
        !           229:       ELSE
        !           230:          IJOBVL = -1
        !           231:          ILVSL = .FALSE.
        !           232:       END IF
        !           233: *
        !           234:       IF( LSAME( JOBVSR, 'N' ) ) THEN
        !           235:          IJOBVR = 1
        !           236:          ILVSR = .FALSE.
        !           237:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
        !           238:          IJOBVR = 2
        !           239:          ILVSR = .TRUE.
        !           240:       ELSE
        !           241:          IJOBVR = -1
        !           242:          ILVSR = .FALSE.
        !           243:       END IF
        !           244: *
        !           245:       WANTST = LSAME( SORT, 'S' )
        !           246: *
        !           247: *     Test the input arguments
        !           248: *
        !           249:       INFO = 0
        !           250:       LQUERY = ( LWORK.EQ.-1 )
        !           251:       IF( IJOBVL.LE.0 ) THEN
        !           252:          INFO = -1
        !           253:       ELSE IF( IJOBVR.LE.0 ) THEN
        !           254:          INFO = -2
        !           255:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
        !           256:          INFO = -3
        !           257:       ELSE IF( N.LT.0 ) THEN
        !           258:          INFO = -5
        !           259:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           260:          INFO = -7
        !           261:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           262:          INFO = -9
        !           263:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
        !           264:          INFO = -15
        !           265:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
        !           266:          INFO = -17
        !           267:       END IF
        !           268: *
        !           269: *     Compute workspace
        !           270: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           271: *       minimal amount of workspace needed at that point in the code,
        !           272: *       as well as the preferred amount for good performance.
        !           273: *       NB refers to the optimal block size for the immediately
        !           274: *       following subroutine, as returned by ILAENV.)
        !           275: *
        !           276:       IF( INFO.EQ.0 ) THEN
        !           277:          IF( N.GT.0 )THEN
        !           278:             MINWRK = MAX( 8*N, 6*N + 16 )
        !           279:             MAXWRK = MINWRK - N +
        !           280:      $               N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 )
        !           281:             MAXWRK = MAX( MAXWRK, MINWRK - N +
        !           282:      $                    N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, -1 ) )
        !           283:             IF( ILVSL ) THEN
        !           284:                MAXWRK = MAX( MAXWRK, MINWRK - N +
        !           285:      $                       N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
        !           286:             END IF
        !           287:          ELSE
        !           288:             MINWRK = 1
        !           289:             MAXWRK = 1
        !           290:          END IF
        !           291:          WORK( 1 ) = MAXWRK
        !           292: *
        !           293:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
        !           294:      $      INFO = -19
        !           295:       END IF
        !           296: *
        !           297:       IF( INFO.NE.0 ) THEN
        !           298:          CALL XERBLA( 'DGGES ', -INFO )
        !           299:          RETURN
        !           300:       ELSE IF( LQUERY ) THEN
        !           301:          RETURN
        !           302:       END IF
        !           303: *
        !           304: *     Quick return if possible
        !           305: *
        !           306:       IF( N.EQ.0 ) THEN
        !           307:          SDIM = 0
        !           308:          RETURN
        !           309:       END IF
        !           310: *
        !           311: *     Get machine constants
        !           312: *
        !           313:       EPS = DLAMCH( 'P' )
        !           314:       SAFMIN = DLAMCH( 'S' )
        !           315:       SAFMAX = ONE / SAFMIN
        !           316:       CALL DLABAD( SAFMIN, SAFMAX )
        !           317:       SMLNUM = SQRT( SAFMIN ) / EPS
        !           318:       BIGNUM = ONE / SMLNUM
        !           319: *
        !           320: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           321: *
        !           322:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
        !           323:       ILASCL = .FALSE.
        !           324:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           325:          ANRMTO = SMLNUM
        !           326:          ILASCL = .TRUE.
        !           327:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           328:          ANRMTO = BIGNUM
        !           329:          ILASCL = .TRUE.
        !           330:       END IF
        !           331:       IF( ILASCL )
        !           332:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
        !           333: *
        !           334: *     Scale B if max element outside range [SMLNUM,BIGNUM]
        !           335: *
        !           336:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
        !           337:       ILBSCL = .FALSE.
        !           338:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           339:          BNRMTO = SMLNUM
        !           340:          ILBSCL = .TRUE.
        !           341:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           342:          BNRMTO = BIGNUM
        !           343:          ILBSCL = .TRUE.
        !           344:       END IF
        !           345:       IF( ILBSCL )
        !           346:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
        !           347: *
        !           348: *     Permute the matrix to make it more nearly triangular
        !           349: *     (Workspace: need 6*N + 2*N space for storing balancing factors)
        !           350: *
        !           351:       ILEFT = 1
        !           352:       IRIGHT = N + 1
        !           353:       IWRK = IRIGHT + N
        !           354:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
        !           355:      $             WORK( IRIGHT ), WORK( IWRK ), IERR )
        !           356: *
        !           357: *     Reduce B to triangular form (QR decomposition of B)
        !           358: *     (Workspace: need N, prefer N*NB)
        !           359: *
        !           360:       IROWS = IHI + 1 - ILO
        !           361:       ICOLS = N + 1 - ILO
        !           362:       ITAU = IWRK
        !           363:       IWRK = ITAU + IROWS
        !           364:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
        !           365:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           366: *
        !           367: *     Apply the orthogonal transformation to matrix A
        !           368: *     (Workspace: need N, prefer N*NB)
        !           369: *
        !           370:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
        !           371:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
        !           372:      $             LWORK+1-IWRK, IERR )
        !           373: *
        !           374: *     Initialize VSL
        !           375: *     (Workspace: need N, prefer N*NB)
        !           376: *
        !           377:       IF( ILVSL ) THEN
        !           378:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
        !           379:          IF( IROWS.GT.1 ) THEN
        !           380:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
        !           381:      $                   VSL( ILO+1, ILO ), LDVSL )
        !           382:          END IF
        !           383:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
        !           384:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           385:       END IF
        !           386: *
        !           387: *     Initialize VSR
        !           388: *
        !           389:       IF( ILVSR )
        !           390:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
        !           391: *
        !           392: *     Reduce to generalized Hessenberg form
        !           393: *     (Workspace: none needed)
        !           394: *
        !           395:       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
        !           396:      $             LDVSL, VSR, LDVSR, IERR )
        !           397: *
        !           398: *     Perform QZ algorithm, computing Schur vectors if desired
        !           399: *     (Workspace: need N)
        !           400: *
        !           401:       IWRK = ITAU
        !           402:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
        !           403:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
        !           404:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           405:       IF( IERR.NE.0 ) THEN
        !           406:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
        !           407:             INFO = IERR
        !           408:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
        !           409:             INFO = IERR - N
        !           410:          ELSE
        !           411:             INFO = N + 1
        !           412:          END IF
        !           413:          GO TO 50
        !           414:       END IF
        !           415: *
        !           416: *     Sort eigenvalues ALPHA/BETA if desired
        !           417: *     (Workspace: need 4*N+16 )
        !           418: *
        !           419:       SDIM = 0
        !           420:       IF( WANTST ) THEN
        !           421: *
        !           422: *        Undo scaling on eigenvalues before SELCTGing
        !           423: *
        !           424:          IF( ILASCL ) THEN
        !           425:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
        !           426:      $                   IERR )
        !           427:             CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
        !           428:      $                   IERR )
        !           429:          END IF
        !           430:          IF( ILBSCL )
        !           431:      $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           432: *
        !           433: *        Select eigenvalues
        !           434: *
        !           435:          DO 10 I = 1, N
        !           436:             BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
        !           437:    10    CONTINUE
        !           438: *
        !           439:          CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
        !           440:      $                ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
        !           441:      $                PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
        !           442:      $                IERR )
        !           443:          IF( IERR.EQ.1 )
        !           444:      $      INFO = N + 3
        !           445: *
        !           446:       END IF
        !           447: *
        !           448: *     Apply back-permutation to VSL and VSR
        !           449: *     (Workspace: none needed)
        !           450: *
        !           451:       IF( ILVSL )
        !           452:      $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
        !           453:      $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
        !           454: *
        !           455:       IF( ILVSR )
        !           456:      $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
        !           457:      $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
        !           458: *
        !           459: *     Check if unscaling would cause over/underflow, if so, rescale
        !           460: *     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
        !           461: *     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
        !           462: *
        !           463:       IF( ILASCL ) THEN
        !           464:          DO 20 I = 1, N
        !           465:             IF( ALPHAI( I ).NE.ZERO ) THEN
        !           466:                IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
        !           467:      $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
        !           468:                   WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
        !           469:                   BETA( I ) = BETA( I )*WORK( 1 )
        !           470:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
        !           471:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
        !           472:                ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
        !           473:      $                  ( ANRMTO / ANRM ) .OR.
        !           474:      $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
        !           475:      $                   THEN
        !           476:                   WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
        !           477:                   BETA( I ) = BETA( I )*WORK( 1 )
        !           478:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
        !           479:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
        !           480:                END IF
        !           481:             END IF
        !           482:    20    CONTINUE
        !           483:       END IF
        !           484: *
        !           485:       IF( ILBSCL ) THEN
        !           486:          DO 30 I = 1, N
        !           487:             IF( ALPHAI( I ).NE.ZERO ) THEN
        !           488:                IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
        !           489:      $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
        !           490:                   WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
        !           491:                   BETA( I ) = BETA( I )*WORK( 1 )
        !           492:                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
        !           493:                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
        !           494:                END IF
        !           495:             END IF
        !           496:    30    CONTINUE
        !           497:       END IF
        !           498: *
        !           499: *     Undo scaling
        !           500: *
        !           501:       IF( ILASCL ) THEN
        !           502:          CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
        !           503:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
        !           504:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
        !           505:       END IF
        !           506: *
        !           507:       IF( ILBSCL ) THEN
        !           508:          CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
        !           509:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           510:       END IF
        !           511: *
        !           512:       IF( WANTST ) THEN
        !           513: *
        !           514: *        Check if reordering is correct
        !           515: *
        !           516:          LASTSL = .TRUE.
        !           517:          LST2SL = .TRUE.
        !           518:          SDIM = 0
        !           519:          IP = 0
        !           520:          DO 40 I = 1, N
        !           521:             CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
        !           522:             IF( ALPHAI( I ).EQ.ZERO ) THEN
        !           523:                IF( CURSL )
        !           524:      $            SDIM = SDIM + 1
        !           525:                IP = 0
        !           526:                IF( CURSL .AND. .NOT.LASTSL )
        !           527:      $            INFO = N + 2
        !           528:             ELSE
        !           529:                IF( IP.EQ.1 ) THEN
        !           530: *
        !           531: *                 Last eigenvalue of conjugate pair
        !           532: *
        !           533:                   CURSL = CURSL .OR. LASTSL
        !           534:                   LASTSL = CURSL
        !           535:                   IF( CURSL )
        !           536:      $               SDIM = SDIM + 2
        !           537:                   IP = -1
        !           538:                   IF( CURSL .AND. .NOT.LST2SL )
        !           539:      $               INFO = N + 2
        !           540:                ELSE
        !           541: *
        !           542: *                 First eigenvalue of conjugate pair
        !           543: *
        !           544:                   IP = 1
        !           545:                END IF
        !           546:             END IF
        !           547:             LST2SL = LASTSL
        !           548:             LASTSL = CURSL
        !           549:    40    CONTINUE
        !           550: *
        !           551:       END IF
        !           552: *
        !           553:    50 CONTINUE
        !           554: *
        !           555:       WORK( 1 ) = MAXWRK
        !           556: *
        !           557:       RETURN
        !           558: *
        !           559: *     End of DGGES
        !           560: *
        !           561:       END

CVSweb interface <joel.bertrand@systella.fr>