File:  [local] / rpl / lapack / lapack / dggbal.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:24 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
    2:      $                   RSCALE, WORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          JOB
   11:       INTEGER            IHI, ILO, INFO, LDA, LDB, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), LSCALE( * ),
   15:      $                   RSCALE( * ), WORK( * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DGGBAL balances a pair of general real matrices (A,B).  This
   22: *  involves, first, permuting A and B by similarity transformations to
   23: *  isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
   24: *  elements on the diagonal; and second, applying a diagonal similarity
   25: *  transformation to rows and columns ILO to IHI to make the rows
   26: *  and columns as close in norm as possible. Both steps are optional.
   27: *
   28: *  Balancing may reduce the 1-norm of the matrices, and improve the
   29: *  accuracy of the computed eigenvalues and/or eigenvectors in the
   30: *  generalized eigenvalue problem A*x = lambda*B*x.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  JOB     (input) CHARACTER*1
   36: *          Specifies the operations to be performed on A and B:
   37: *          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
   38: *                  and RSCALE(I) = 1.0 for i = 1,...,N.
   39: *          = 'P':  permute only;
   40: *          = 'S':  scale only;
   41: *          = 'B':  both permute and scale.
   42: *
   43: *  N       (input) INTEGER
   44: *          The order of the matrices A and B.  N >= 0.
   45: *
   46: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   47: *          On entry, the input matrix A.
   48: *          On exit,  A is overwritten by the balanced matrix.
   49: *          If JOB = 'N', A is not referenced.
   50: *
   51: *  LDA     (input) INTEGER
   52: *          The leading dimension of the array A. LDA >= max(1,N).
   53: *
   54: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
   55: *          On entry, the input matrix B.
   56: *          On exit,  B is overwritten by the balanced matrix.
   57: *          If JOB = 'N', B is not referenced.
   58: *
   59: *  LDB     (input) INTEGER
   60: *          The leading dimension of the array B. LDB >= max(1,N).
   61: *
   62: *  ILO     (output) INTEGER
   63: *  IHI     (output) INTEGER
   64: *          ILO and IHI are set to integers such that on exit
   65: *          A(i,j) = 0 and B(i,j) = 0 if i > j and
   66: *          j = 1,...,ILO-1 or i = IHI+1,...,N.
   67: *          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
   68: *
   69: *  LSCALE  (output) DOUBLE PRECISION array, dimension (N)
   70: *          Details of the permutations and scaling factors applied
   71: *          to the left side of A and B.  If P(j) is the index of the
   72: *          row interchanged with row j, and D(j)
   73: *          is the scaling factor applied to row j, then
   74: *            LSCALE(j) = P(j)    for J = 1,...,ILO-1
   75: *                      = D(j)    for J = ILO,...,IHI
   76: *                      = P(j)    for J = IHI+1,...,N.
   77: *          The order in which the interchanges are made is N to IHI+1,
   78: *          then 1 to ILO-1.
   79: *
   80: *  RSCALE  (output) DOUBLE PRECISION array, dimension (N)
   81: *          Details of the permutations and scaling factors applied
   82: *          to the right side of A and B.  If P(j) is the index of the
   83: *          column interchanged with column j, and D(j)
   84: *          is the scaling factor applied to column j, then
   85: *            LSCALE(j) = P(j)    for J = 1,...,ILO-1
   86: *                      = D(j)    for J = ILO,...,IHI
   87: *                      = P(j)    for J = IHI+1,...,N.
   88: *          The order in which the interchanges are made is N to IHI+1,
   89: *          then 1 to ILO-1.
   90: *
   91: *  WORK    (workspace) REAL array, dimension (lwork)
   92: *          lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
   93: *          at least 1 when JOB = 'N' or 'P'.
   94: *
   95: *  INFO    (output) INTEGER
   96: *          = 0:  successful exit
   97: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
   98: *
   99: *  Further Details
  100: *  ===============
  101: *
  102: *  See R.C. WARD, Balancing the generalized eigenvalue problem,
  103: *                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
  104: *
  105: *  =====================================================================
  106: *
  107: *     .. Parameters ..
  108:       DOUBLE PRECISION   ZERO, HALF, ONE
  109:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  110:       DOUBLE PRECISION   THREE, SCLFAC
  111:       PARAMETER          ( THREE = 3.0D+0, SCLFAC = 1.0D+1 )
  112: *     ..
  113: *     .. Local Scalars ..
  114:       INTEGER            I, ICAB, IFLOW, IP1, IR, IRAB, IT, J, JC, JP1,
  115:      $                   K, KOUNT, L, LCAB, LM1, LRAB, LSFMAX, LSFMIN,
  116:      $                   M, NR, NRP2
  117:       DOUBLE PRECISION   ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2,
  118:      $                   COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX,
  119:      $                   SFMIN, SUM, T, TA, TB, TC
  120: *     ..
  121: *     .. External Functions ..
  122:       LOGICAL            LSAME
  123:       INTEGER            IDAMAX
  124:       DOUBLE PRECISION   DDOT, DLAMCH
  125:       EXTERNAL           LSAME, IDAMAX, DDOT, DLAMCH
  126: *     ..
  127: *     .. External Subroutines ..
  128:       EXTERNAL           DAXPY, DSCAL, DSWAP, XERBLA
  129: *     ..
  130: *     .. Intrinsic Functions ..
  131:       INTRINSIC          ABS, DBLE, INT, LOG10, MAX, MIN, SIGN
  132: *     ..
  133: *     .. Executable Statements ..
  134: *
  135: *     Test the input parameters
  136: *
  137:       INFO = 0
  138:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
  139:      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
  140:          INFO = -1
  141:       ELSE IF( N.LT.0 ) THEN
  142:          INFO = -2
  143:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  144:          INFO = -4
  145:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  146:          INFO = -6
  147:       END IF
  148:       IF( INFO.NE.0 ) THEN
  149:          CALL XERBLA( 'DGGBAL', -INFO )
  150:          RETURN
  151:       END IF
  152: *
  153: *     Quick return if possible
  154: *
  155:       IF( N.EQ.0 ) THEN
  156:          ILO = 1
  157:          IHI = N
  158:          RETURN
  159:       END IF
  160: *
  161:       IF( N.EQ.1 ) THEN
  162:          ILO = 1
  163:          IHI = N
  164:          LSCALE( 1 ) = ONE
  165:          RSCALE( 1 ) = ONE
  166:          RETURN
  167:       END IF
  168: *
  169:       IF( LSAME( JOB, 'N' ) ) THEN
  170:          ILO = 1
  171:          IHI = N
  172:          DO 10 I = 1, N
  173:             LSCALE( I ) = ONE
  174:             RSCALE( I ) = ONE
  175:    10    CONTINUE
  176:          RETURN
  177:       END IF
  178: *
  179:       K = 1
  180:       L = N
  181:       IF( LSAME( JOB, 'S' ) )
  182:      $   GO TO 190
  183: *
  184:       GO TO 30
  185: *
  186: *     Permute the matrices A and B to isolate the eigenvalues.
  187: *
  188: *     Find row with one nonzero in columns 1 through L
  189: *
  190:    20 CONTINUE
  191:       L = LM1
  192:       IF( L.NE.1 )
  193:      $   GO TO 30
  194: *
  195:       RSCALE( 1 ) = ONE
  196:       LSCALE( 1 ) = ONE
  197:       GO TO 190
  198: *
  199:    30 CONTINUE
  200:       LM1 = L - 1
  201:       DO 80 I = L, 1, -1
  202:          DO 40 J = 1, LM1
  203:             JP1 = J + 1
  204:             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
  205:      $         GO TO 50
  206:    40    CONTINUE
  207:          J = L
  208:          GO TO 70
  209: *
  210:    50    CONTINUE
  211:          DO 60 J = JP1, L
  212:             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
  213:      $         GO TO 80
  214:    60    CONTINUE
  215:          J = JP1 - 1
  216: *
  217:    70    CONTINUE
  218:          M = L
  219:          IFLOW = 1
  220:          GO TO 160
  221:    80 CONTINUE
  222:       GO TO 100
  223: *
  224: *     Find column with one nonzero in rows K through N
  225: *
  226:    90 CONTINUE
  227:       K = K + 1
  228: *
  229:   100 CONTINUE
  230:       DO 150 J = K, L
  231:          DO 110 I = K, LM1
  232:             IP1 = I + 1
  233:             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
  234:      $         GO TO 120
  235:   110    CONTINUE
  236:          I = L
  237:          GO TO 140
  238:   120    CONTINUE
  239:          DO 130 I = IP1, L
  240:             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
  241:      $         GO TO 150
  242:   130    CONTINUE
  243:          I = IP1 - 1
  244:   140    CONTINUE
  245:          M = K
  246:          IFLOW = 2
  247:          GO TO 160
  248:   150 CONTINUE
  249:       GO TO 190
  250: *
  251: *     Permute rows M and I
  252: *
  253:   160 CONTINUE
  254:       LSCALE( M ) = I
  255:       IF( I.EQ.M )
  256:      $   GO TO 170
  257:       CALL DSWAP( N-K+1, A( I, K ), LDA, A( M, K ), LDA )
  258:       CALL DSWAP( N-K+1, B( I, K ), LDB, B( M, K ), LDB )
  259: *
  260: *     Permute columns M and J
  261: *
  262:   170 CONTINUE
  263:       RSCALE( M ) = J
  264:       IF( J.EQ.M )
  265:      $   GO TO 180
  266:       CALL DSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
  267:       CALL DSWAP( L, B( 1, J ), 1, B( 1, M ), 1 )
  268: *
  269:   180 CONTINUE
  270:       GO TO ( 20, 90 )IFLOW
  271: *
  272:   190 CONTINUE
  273:       ILO = K
  274:       IHI = L
  275: *
  276:       IF( LSAME( JOB, 'P' ) ) THEN
  277:          DO 195 I = ILO, IHI
  278:             LSCALE( I ) = ONE
  279:             RSCALE( I ) = ONE
  280:   195    CONTINUE
  281:          RETURN
  282:       END IF
  283: *
  284:       IF( ILO.EQ.IHI )
  285:      $   RETURN
  286: *
  287: *     Balance the submatrix in rows ILO to IHI.
  288: *
  289:       NR = IHI - ILO + 1
  290:       DO 200 I = ILO, IHI
  291:          RSCALE( I ) = ZERO
  292:          LSCALE( I ) = ZERO
  293: *
  294:          WORK( I ) = ZERO
  295:          WORK( I+N ) = ZERO
  296:          WORK( I+2*N ) = ZERO
  297:          WORK( I+3*N ) = ZERO
  298:          WORK( I+4*N ) = ZERO
  299:          WORK( I+5*N ) = ZERO
  300:   200 CONTINUE
  301: *
  302: *     Compute right side vector in resulting linear equations
  303: *
  304:       BASL = LOG10( SCLFAC )
  305:       DO 240 I = ILO, IHI
  306:          DO 230 J = ILO, IHI
  307:             TB = B( I, J )
  308:             TA = A( I, J )
  309:             IF( TA.EQ.ZERO )
  310:      $         GO TO 210
  311:             TA = LOG10( ABS( TA ) ) / BASL
  312:   210       CONTINUE
  313:             IF( TB.EQ.ZERO )
  314:      $         GO TO 220
  315:             TB = LOG10( ABS( TB ) ) / BASL
  316:   220       CONTINUE
  317:             WORK( I+4*N ) = WORK( I+4*N ) - TA - TB
  318:             WORK( J+5*N ) = WORK( J+5*N ) - TA - TB
  319:   230    CONTINUE
  320:   240 CONTINUE
  321: *
  322:       COEF = ONE / DBLE( 2*NR )
  323:       COEF2 = COEF*COEF
  324:       COEF5 = HALF*COEF2
  325:       NRP2 = NR + 2
  326:       BETA = ZERO
  327:       IT = 1
  328: *
  329: *     Start generalized conjugate gradient iteration
  330: *
  331:   250 CONTINUE
  332: *
  333:       GAMMA = DDOT( NR, WORK( ILO+4*N ), 1, WORK( ILO+4*N ), 1 ) +
  334:      $        DDOT( NR, WORK( ILO+5*N ), 1, WORK( ILO+5*N ), 1 )
  335: *
  336:       EW = ZERO
  337:       EWC = ZERO
  338:       DO 260 I = ILO, IHI
  339:          EW = EW + WORK( I+4*N )
  340:          EWC = EWC + WORK( I+5*N )
  341:   260 CONTINUE
  342: *
  343:       GAMMA = COEF*GAMMA - COEF2*( EW**2+EWC**2 ) - COEF5*( EW-EWC )**2
  344:       IF( GAMMA.EQ.ZERO )
  345:      $   GO TO 350
  346:       IF( IT.NE.1 )
  347:      $   BETA = GAMMA / PGAMMA
  348:       T = COEF5*( EWC-THREE*EW )
  349:       TC = COEF5*( EW-THREE*EWC )
  350: *
  351:       CALL DSCAL( NR, BETA, WORK( ILO ), 1 )
  352:       CALL DSCAL( NR, BETA, WORK( ILO+N ), 1 )
  353: *
  354:       CALL DAXPY( NR, COEF, WORK( ILO+4*N ), 1, WORK( ILO+N ), 1 )
  355:       CALL DAXPY( NR, COEF, WORK( ILO+5*N ), 1, WORK( ILO ), 1 )
  356: *
  357:       DO 270 I = ILO, IHI
  358:          WORK( I ) = WORK( I ) + TC
  359:          WORK( I+N ) = WORK( I+N ) + T
  360:   270 CONTINUE
  361: *
  362: *     Apply matrix to vector
  363: *
  364:       DO 300 I = ILO, IHI
  365:          KOUNT = 0
  366:          SUM = ZERO
  367:          DO 290 J = ILO, IHI
  368:             IF( A( I, J ).EQ.ZERO )
  369:      $         GO TO 280
  370:             KOUNT = KOUNT + 1
  371:             SUM = SUM + WORK( J )
  372:   280       CONTINUE
  373:             IF( B( I, J ).EQ.ZERO )
  374:      $         GO TO 290
  375:             KOUNT = KOUNT + 1
  376:             SUM = SUM + WORK( J )
  377:   290    CONTINUE
  378:          WORK( I+2*N ) = DBLE( KOUNT )*WORK( I+N ) + SUM
  379:   300 CONTINUE
  380: *
  381:       DO 330 J = ILO, IHI
  382:          KOUNT = 0
  383:          SUM = ZERO
  384:          DO 320 I = ILO, IHI
  385:             IF( A( I, J ).EQ.ZERO )
  386:      $         GO TO 310
  387:             KOUNT = KOUNT + 1
  388:             SUM = SUM + WORK( I+N )
  389:   310       CONTINUE
  390:             IF( B( I, J ).EQ.ZERO )
  391:      $         GO TO 320
  392:             KOUNT = KOUNT + 1
  393:             SUM = SUM + WORK( I+N )
  394:   320    CONTINUE
  395:          WORK( J+3*N ) = DBLE( KOUNT )*WORK( J ) + SUM
  396:   330 CONTINUE
  397: *
  398:       SUM = DDOT( NR, WORK( ILO+N ), 1, WORK( ILO+2*N ), 1 ) +
  399:      $      DDOT( NR, WORK( ILO ), 1, WORK( ILO+3*N ), 1 )
  400:       ALPHA = GAMMA / SUM
  401: *
  402: *     Determine correction to current iteration
  403: *
  404:       CMAX = ZERO
  405:       DO 340 I = ILO, IHI
  406:          COR = ALPHA*WORK( I+N )
  407:          IF( ABS( COR ).GT.CMAX )
  408:      $      CMAX = ABS( COR )
  409:          LSCALE( I ) = LSCALE( I ) + COR
  410:          COR = ALPHA*WORK( I )
  411:          IF( ABS( COR ).GT.CMAX )
  412:      $      CMAX = ABS( COR )
  413:          RSCALE( I ) = RSCALE( I ) + COR
  414:   340 CONTINUE
  415:       IF( CMAX.LT.HALF )
  416:      $   GO TO 350
  417: *
  418:       CALL DAXPY( NR, -ALPHA, WORK( ILO+2*N ), 1, WORK( ILO+4*N ), 1 )
  419:       CALL DAXPY( NR, -ALPHA, WORK( ILO+3*N ), 1, WORK( ILO+5*N ), 1 )
  420: *
  421:       PGAMMA = GAMMA
  422:       IT = IT + 1
  423:       IF( IT.LE.NRP2 )
  424:      $   GO TO 250
  425: *
  426: *     End generalized conjugate gradient iteration
  427: *
  428:   350 CONTINUE
  429:       SFMIN = DLAMCH( 'S' )
  430:       SFMAX = ONE / SFMIN
  431:       LSFMIN = INT( LOG10( SFMIN ) / BASL+ONE )
  432:       LSFMAX = INT( LOG10( SFMAX ) / BASL )
  433:       DO 360 I = ILO, IHI
  434:          IRAB = IDAMAX( N-ILO+1, A( I, ILO ), LDA )
  435:          RAB = ABS( A( I, IRAB+ILO-1 ) )
  436:          IRAB = IDAMAX( N-ILO+1, B( I, ILO ), LDB )
  437:          RAB = MAX( RAB, ABS( B( I, IRAB+ILO-1 ) ) )
  438:          LRAB = INT( LOG10( RAB+SFMIN ) / BASL+ONE )
  439:          IR = LSCALE( I ) + SIGN( HALF, LSCALE( I ) )
  440:          IR = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB )
  441:          LSCALE( I ) = SCLFAC**IR
  442:          ICAB = IDAMAX( IHI, A( 1, I ), 1 )
  443:          CAB = ABS( A( ICAB, I ) )
  444:          ICAB = IDAMAX( IHI, B( 1, I ), 1 )
  445:          CAB = MAX( CAB, ABS( B( ICAB, I ) ) )
  446:          LCAB = INT( LOG10( CAB+SFMIN ) / BASL+ONE )
  447:          JC = RSCALE( I ) + SIGN( HALF, RSCALE( I ) )
  448:          JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB )
  449:          RSCALE( I ) = SCLFAC**JC
  450:   360 CONTINUE
  451: *
  452: *     Row scaling of matrices A and B
  453: *
  454:       DO 370 I = ILO, IHI
  455:          CALL DSCAL( N-ILO+1, LSCALE( I ), A( I, ILO ), LDA )
  456:          CALL DSCAL( N-ILO+1, LSCALE( I ), B( I, ILO ), LDB )
  457:   370 CONTINUE
  458: *
  459: *     Column scaling of matrices A and B
  460: *
  461:       DO 380 J = ILO, IHI
  462:          CALL DSCAL( IHI, RSCALE( J ), A( 1, J ), 1 )
  463:          CALL DSCAL( IHI, RSCALE( J ), B( 1, J ), 1 )
  464:   380 CONTINUE
  465: *
  466:       RETURN
  467: *
  468: *     End of DGGBAL
  469: *
  470:       END

CVSweb interface <joel.bertrand@systella.fr>