File:  [local] / rpl / lapack / lapack / dggbal.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:50 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DGGBAL
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGGBAL + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggbal.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggbal.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggbal.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
   22: *                          RSCALE, WORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOB
   26: *       INTEGER            IHI, ILO, INFO, LDA, LDB, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), LSCALE( * ),
   30: *      $                   RSCALE( * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DGGBAL balances a pair of general real matrices (A,B).  This
   40: *> involves, first, permuting A and B by similarity transformations to
   41: *> isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
   42: *> elements on the diagonal; and second, applying a diagonal similarity
   43: *> transformation to rows and columns ILO to IHI to make the rows
   44: *> and columns as close in norm as possible. Both steps are optional.
   45: *>
   46: *> Balancing may reduce the 1-norm of the matrices, and improve the
   47: *> accuracy of the computed eigenvalues and/or eigenvectors in the
   48: *> generalized eigenvalue problem A*x = lambda*B*x.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] JOB
   55: *> \verbatim
   56: *>          JOB is CHARACTER*1
   57: *>          Specifies the operations to be performed on A and B:
   58: *>          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
   59: *>                  and RSCALE(I) = 1.0 for i = 1,...,N.
   60: *>          = 'P':  permute only;
   61: *>          = 'S':  scale only;
   62: *>          = 'B':  both permute and scale.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The order of the matrices A and B.  N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in,out] A
   72: *> \verbatim
   73: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   74: *>          On entry, the input matrix A.
   75: *>          On exit,  A is overwritten by the balanced matrix.
   76: *>          If JOB = 'N', A is not referenced.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] LDA
   80: *> \verbatim
   81: *>          LDA is INTEGER
   82: *>          The leading dimension of the array A. LDA >= max(1,N).
   83: *> \endverbatim
   84: *>
   85: *> \param[in,out] B
   86: *> \verbatim
   87: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
   88: *>          On entry, the input matrix B.
   89: *>          On exit,  B is overwritten by the balanced matrix.
   90: *>          If JOB = 'N', B is not referenced.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] LDB
   94: *> \verbatim
   95: *>          LDB is INTEGER
   96: *>          The leading dimension of the array B. LDB >= max(1,N).
   97: *> \endverbatim
   98: *>
   99: *> \param[out] ILO
  100: *> \verbatim
  101: *>          ILO is INTEGER
  102: *> \endverbatim
  103: *>
  104: *> \param[out] IHI
  105: *> \verbatim
  106: *>          IHI is INTEGER
  107: *>          ILO and IHI are set to integers such that on exit
  108: *>          A(i,j) = 0 and B(i,j) = 0 if i > j and
  109: *>          j = 1,...,ILO-1 or i = IHI+1,...,N.
  110: *>          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] LSCALE
  114: *> \verbatim
  115: *>          LSCALE is DOUBLE PRECISION array, dimension (N)
  116: *>          Details of the permutations and scaling factors applied
  117: *>          to the left side of A and B.  If P(j) is the index of the
  118: *>          row interchanged with row j, and D(j)
  119: *>          is the scaling factor applied to row j, then
  120: *>            LSCALE(j) = P(j)    for J = 1,...,ILO-1
  121: *>                      = D(j)    for J = ILO,...,IHI
  122: *>                      = P(j)    for J = IHI+1,...,N.
  123: *>          The order in which the interchanges are made is N to IHI+1,
  124: *>          then 1 to ILO-1.
  125: *> \endverbatim
  126: *>
  127: *> \param[out] RSCALE
  128: *> \verbatim
  129: *>          RSCALE is DOUBLE PRECISION array, dimension (N)
  130: *>          Details of the permutations and scaling factors applied
  131: *>          to the right side of A and B.  If P(j) is the index of the
  132: *>          column interchanged with column j, and D(j)
  133: *>          is the scaling factor applied to column j, then
  134: *>            LSCALE(j) = P(j)    for J = 1,...,ILO-1
  135: *>                      = D(j)    for J = ILO,...,IHI
  136: *>                      = P(j)    for J = IHI+1,...,N.
  137: *>          The order in which the interchanges are made is N to IHI+1,
  138: *>          then 1 to ILO-1.
  139: *> \endverbatim
  140: *>
  141: *> \param[out] WORK
  142: *> \verbatim
  143: *>          WORK is DOUBLE PRECISION array, dimension (lwork)
  144: *>          lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
  145: *>          at least 1 when JOB = 'N' or 'P'.
  146: *> \endverbatim
  147: *>
  148: *> \param[out] INFO
  149: *> \verbatim
  150: *>          INFO is INTEGER
  151: *>          = 0:  successful exit
  152: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  153: *> \endverbatim
  154: *
  155: *  Authors:
  156: *  ========
  157: *
  158: *> \author Univ. of Tennessee
  159: *> \author Univ. of California Berkeley
  160: *> \author Univ. of Colorado Denver
  161: *> \author NAG Ltd.
  162: *
  163: *> \ingroup doubleGBcomputational
  164: *
  165: *> \par Further Details:
  166: *  =====================
  167: *>
  168: *> \verbatim
  169: *>
  170: *>  See R.C. WARD, Balancing the generalized eigenvalue problem,
  171: *>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
  172: *> \endverbatim
  173: *>
  174: *  =====================================================================
  175:       SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
  176:      $                   RSCALE, WORK, INFO )
  177: *
  178: *  -- LAPACK computational routine --
  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181: *
  182: *     .. Scalar Arguments ..
  183:       CHARACTER          JOB
  184:       INTEGER            IHI, ILO, INFO, LDA, LDB, N
  185: *     ..
  186: *     .. Array Arguments ..
  187:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), LSCALE( * ),
  188:      $                   RSCALE( * ), WORK( * )
  189: *     ..
  190: *
  191: *  =====================================================================
  192: *
  193: *     .. Parameters ..
  194:       DOUBLE PRECISION   ZERO, HALF, ONE
  195:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  196:       DOUBLE PRECISION   THREE, SCLFAC
  197:       PARAMETER          ( THREE = 3.0D+0, SCLFAC = 1.0D+1 )
  198: *     ..
  199: *     .. Local Scalars ..
  200:       INTEGER            I, ICAB, IFLOW, IP1, IR, IRAB, IT, J, JC, JP1,
  201:      $                   K, KOUNT, L, LCAB, LM1, LRAB, LSFMAX, LSFMIN,
  202:      $                   M, NR, NRP2
  203:       DOUBLE PRECISION   ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2,
  204:      $                   COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX,
  205:      $                   SFMIN, SUM, T, TA, TB, TC
  206: *     ..
  207: *     .. External Functions ..
  208:       LOGICAL            LSAME
  209:       INTEGER            IDAMAX
  210:       DOUBLE PRECISION   DDOT, DLAMCH
  211:       EXTERNAL           LSAME, IDAMAX, DDOT, DLAMCH
  212: *     ..
  213: *     .. External Subroutines ..
  214:       EXTERNAL           DAXPY, DSCAL, DSWAP, XERBLA
  215: *     ..
  216: *     .. Intrinsic Functions ..
  217:       INTRINSIC          ABS, DBLE, INT, LOG10, MAX, MIN, SIGN
  218: *     ..
  219: *     .. Executable Statements ..
  220: *
  221: *     Test the input parameters
  222: *
  223:       INFO = 0
  224:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
  225:      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
  226:          INFO = -1
  227:       ELSE IF( N.LT.0 ) THEN
  228:          INFO = -2
  229:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  230:          INFO = -4
  231:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  232:          INFO = -6
  233:       END IF
  234:       IF( INFO.NE.0 ) THEN
  235:          CALL XERBLA( 'DGGBAL', -INFO )
  236:          RETURN
  237:       END IF
  238: *
  239: *     Quick return if possible
  240: *
  241:       IF( N.EQ.0 ) THEN
  242:          ILO = 1
  243:          IHI = N
  244:          RETURN
  245:       END IF
  246: *
  247:       IF( N.EQ.1 ) THEN
  248:          ILO = 1
  249:          IHI = N
  250:          LSCALE( 1 ) = ONE
  251:          RSCALE( 1 ) = ONE
  252:          RETURN
  253:       END IF
  254: *
  255:       IF( LSAME( JOB, 'N' ) ) THEN
  256:          ILO = 1
  257:          IHI = N
  258:          DO 10 I = 1, N
  259:             LSCALE( I ) = ONE
  260:             RSCALE( I ) = ONE
  261:    10    CONTINUE
  262:          RETURN
  263:       END IF
  264: *
  265:       K = 1
  266:       L = N
  267:       IF( LSAME( JOB, 'S' ) )
  268:      $   GO TO 190
  269: *
  270:       GO TO 30
  271: *
  272: *     Permute the matrices A and B to isolate the eigenvalues.
  273: *
  274: *     Find row with one nonzero in columns 1 through L
  275: *
  276:    20 CONTINUE
  277:       L = LM1
  278:       IF( L.NE.1 )
  279:      $   GO TO 30
  280: *
  281:       RSCALE( 1 ) = ONE
  282:       LSCALE( 1 ) = ONE
  283:       GO TO 190
  284: *
  285:    30 CONTINUE
  286:       LM1 = L - 1
  287:       DO 80 I = L, 1, -1
  288:          DO 40 J = 1, LM1
  289:             JP1 = J + 1
  290:             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
  291:      $         GO TO 50
  292:    40    CONTINUE
  293:          J = L
  294:          GO TO 70
  295: *
  296:    50    CONTINUE
  297:          DO 60 J = JP1, L
  298:             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
  299:      $         GO TO 80
  300:    60    CONTINUE
  301:          J = JP1 - 1
  302: *
  303:    70    CONTINUE
  304:          M = L
  305:          IFLOW = 1
  306:          GO TO 160
  307:    80 CONTINUE
  308:       GO TO 100
  309: *
  310: *     Find column with one nonzero in rows K through N
  311: *
  312:    90 CONTINUE
  313:       K = K + 1
  314: *
  315:   100 CONTINUE
  316:       DO 150 J = K, L
  317:          DO 110 I = K, LM1
  318:             IP1 = I + 1
  319:             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
  320:      $         GO TO 120
  321:   110    CONTINUE
  322:          I = L
  323:          GO TO 140
  324:   120    CONTINUE
  325:          DO 130 I = IP1, L
  326:             IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
  327:      $         GO TO 150
  328:   130    CONTINUE
  329:          I = IP1 - 1
  330:   140    CONTINUE
  331:          M = K
  332:          IFLOW = 2
  333:          GO TO 160
  334:   150 CONTINUE
  335:       GO TO 190
  336: *
  337: *     Permute rows M and I
  338: *
  339:   160 CONTINUE
  340:       LSCALE( M ) = I
  341:       IF( I.EQ.M )
  342:      $   GO TO 170
  343:       CALL DSWAP( N-K+1, A( I, K ), LDA, A( M, K ), LDA )
  344:       CALL DSWAP( N-K+1, B( I, K ), LDB, B( M, K ), LDB )
  345: *
  346: *     Permute columns M and J
  347: *
  348:   170 CONTINUE
  349:       RSCALE( M ) = J
  350:       IF( J.EQ.M )
  351:      $   GO TO 180
  352:       CALL DSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
  353:       CALL DSWAP( L, B( 1, J ), 1, B( 1, M ), 1 )
  354: *
  355:   180 CONTINUE
  356:       GO TO ( 20, 90 )IFLOW
  357: *
  358:   190 CONTINUE
  359:       ILO = K
  360:       IHI = L
  361: *
  362:       IF( LSAME( JOB, 'P' ) ) THEN
  363:          DO 195 I = ILO, IHI
  364:             LSCALE( I ) = ONE
  365:             RSCALE( I ) = ONE
  366:   195    CONTINUE
  367:          RETURN
  368:       END IF
  369: *
  370:       IF( ILO.EQ.IHI )
  371:      $   RETURN
  372: *
  373: *     Balance the submatrix in rows ILO to IHI.
  374: *
  375:       NR = IHI - ILO + 1
  376:       DO 200 I = ILO, IHI
  377:          RSCALE( I ) = ZERO
  378:          LSCALE( I ) = ZERO
  379: *
  380:          WORK( I ) = ZERO
  381:          WORK( I+N ) = ZERO
  382:          WORK( I+2*N ) = ZERO
  383:          WORK( I+3*N ) = ZERO
  384:          WORK( I+4*N ) = ZERO
  385:          WORK( I+5*N ) = ZERO
  386:   200 CONTINUE
  387: *
  388: *     Compute right side vector in resulting linear equations
  389: *
  390:       BASL = LOG10( SCLFAC )
  391:       DO 240 I = ILO, IHI
  392:          DO 230 J = ILO, IHI
  393:             TB = B( I, J )
  394:             TA = A( I, J )
  395:             IF( TA.EQ.ZERO )
  396:      $         GO TO 210
  397:             TA = LOG10( ABS( TA ) ) / BASL
  398:   210       CONTINUE
  399:             IF( TB.EQ.ZERO )
  400:      $         GO TO 220
  401:             TB = LOG10( ABS( TB ) ) / BASL
  402:   220       CONTINUE
  403:             WORK( I+4*N ) = WORK( I+4*N ) - TA - TB
  404:             WORK( J+5*N ) = WORK( J+5*N ) - TA - TB
  405:   230    CONTINUE
  406:   240 CONTINUE
  407: *
  408:       COEF = ONE / DBLE( 2*NR )
  409:       COEF2 = COEF*COEF
  410:       COEF5 = HALF*COEF2
  411:       NRP2 = NR + 2
  412:       BETA = ZERO
  413:       IT = 1
  414: *
  415: *     Start generalized conjugate gradient iteration
  416: *
  417:   250 CONTINUE
  418: *
  419:       GAMMA = DDOT( NR, WORK( ILO+4*N ), 1, WORK( ILO+4*N ), 1 ) +
  420:      $        DDOT( NR, WORK( ILO+5*N ), 1, WORK( ILO+5*N ), 1 )
  421: *
  422:       EW = ZERO
  423:       EWC = ZERO
  424:       DO 260 I = ILO, IHI
  425:          EW = EW + WORK( I+4*N )
  426:          EWC = EWC + WORK( I+5*N )
  427:   260 CONTINUE
  428: *
  429:       GAMMA = COEF*GAMMA - COEF2*( EW**2+EWC**2 ) - COEF5*( EW-EWC )**2
  430:       IF( GAMMA.EQ.ZERO )
  431:      $   GO TO 350
  432:       IF( IT.NE.1 )
  433:      $   BETA = GAMMA / PGAMMA
  434:       T = COEF5*( EWC-THREE*EW )
  435:       TC = COEF5*( EW-THREE*EWC )
  436: *
  437:       CALL DSCAL( NR, BETA, WORK( ILO ), 1 )
  438:       CALL DSCAL( NR, BETA, WORK( ILO+N ), 1 )
  439: *
  440:       CALL DAXPY( NR, COEF, WORK( ILO+4*N ), 1, WORK( ILO+N ), 1 )
  441:       CALL DAXPY( NR, COEF, WORK( ILO+5*N ), 1, WORK( ILO ), 1 )
  442: *
  443:       DO 270 I = ILO, IHI
  444:          WORK( I ) = WORK( I ) + TC
  445:          WORK( I+N ) = WORK( I+N ) + T
  446:   270 CONTINUE
  447: *
  448: *     Apply matrix to vector
  449: *
  450:       DO 300 I = ILO, IHI
  451:          KOUNT = 0
  452:          SUM = ZERO
  453:          DO 290 J = ILO, IHI
  454:             IF( A( I, J ).EQ.ZERO )
  455:      $         GO TO 280
  456:             KOUNT = KOUNT + 1
  457:             SUM = SUM + WORK( J )
  458:   280       CONTINUE
  459:             IF( B( I, J ).EQ.ZERO )
  460:      $         GO TO 290
  461:             KOUNT = KOUNT + 1
  462:             SUM = SUM + WORK( J )
  463:   290    CONTINUE
  464:          WORK( I+2*N ) = DBLE( KOUNT )*WORK( I+N ) + SUM
  465:   300 CONTINUE
  466: *
  467:       DO 330 J = ILO, IHI
  468:          KOUNT = 0
  469:          SUM = ZERO
  470:          DO 320 I = ILO, IHI
  471:             IF( A( I, J ).EQ.ZERO )
  472:      $         GO TO 310
  473:             KOUNT = KOUNT + 1
  474:             SUM = SUM + WORK( I+N )
  475:   310       CONTINUE
  476:             IF( B( I, J ).EQ.ZERO )
  477:      $         GO TO 320
  478:             KOUNT = KOUNT + 1
  479:             SUM = SUM + WORK( I+N )
  480:   320    CONTINUE
  481:          WORK( J+3*N ) = DBLE( KOUNT )*WORK( J ) + SUM
  482:   330 CONTINUE
  483: *
  484:       SUM = DDOT( NR, WORK( ILO+N ), 1, WORK( ILO+2*N ), 1 ) +
  485:      $      DDOT( NR, WORK( ILO ), 1, WORK( ILO+3*N ), 1 )
  486:       ALPHA = GAMMA / SUM
  487: *
  488: *     Determine correction to current iteration
  489: *
  490:       CMAX = ZERO
  491:       DO 340 I = ILO, IHI
  492:          COR = ALPHA*WORK( I+N )
  493:          IF( ABS( COR ).GT.CMAX )
  494:      $      CMAX = ABS( COR )
  495:          LSCALE( I ) = LSCALE( I ) + COR
  496:          COR = ALPHA*WORK( I )
  497:          IF( ABS( COR ).GT.CMAX )
  498:      $      CMAX = ABS( COR )
  499:          RSCALE( I ) = RSCALE( I ) + COR
  500:   340 CONTINUE
  501:       IF( CMAX.LT.HALF )
  502:      $   GO TO 350
  503: *
  504:       CALL DAXPY( NR, -ALPHA, WORK( ILO+2*N ), 1, WORK( ILO+4*N ), 1 )
  505:       CALL DAXPY( NR, -ALPHA, WORK( ILO+3*N ), 1, WORK( ILO+5*N ), 1 )
  506: *
  507:       PGAMMA = GAMMA
  508:       IT = IT + 1
  509:       IF( IT.LE.NRP2 )
  510:      $   GO TO 250
  511: *
  512: *     End generalized conjugate gradient iteration
  513: *
  514:   350 CONTINUE
  515:       SFMIN = DLAMCH( 'S' )
  516:       SFMAX = ONE / SFMIN
  517:       LSFMIN = INT( LOG10( SFMIN ) / BASL+ONE )
  518:       LSFMAX = INT( LOG10( SFMAX ) / BASL )
  519:       DO 360 I = ILO, IHI
  520:          IRAB = IDAMAX( N-ILO+1, A( I, ILO ), LDA )
  521:          RAB = ABS( A( I, IRAB+ILO-1 ) )
  522:          IRAB = IDAMAX( N-ILO+1, B( I, ILO ), LDB )
  523:          RAB = MAX( RAB, ABS( B( I, IRAB+ILO-1 ) ) )
  524:          LRAB = INT( LOG10( RAB+SFMIN ) / BASL+ONE )
  525:          IR = INT(LSCALE( I ) + SIGN( HALF, LSCALE( I ) ))
  526:          IR = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB )
  527:          LSCALE( I ) = SCLFAC**IR
  528:          ICAB = IDAMAX( IHI, A( 1, I ), 1 )
  529:          CAB = ABS( A( ICAB, I ) )
  530:          ICAB = IDAMAX( IHI, B( 1, I ), 1 )
  531:          CAB = MAX( CAB, ABS( B( ICAB, I ) ) )
  532:          LCAB = INT( LOG10( CAB+SFMIN ) / BASL+ONE )
  533:          JC = INT(RSCALE( I ) + SIGN( HALF, RSCALE( I ) ))
  534:          JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB )
  535:          RSCALE( I ) = SCLFAC**JC
  536:   360 CONTINUE
  537: *
  538: *     Row scaling of matrices A and B
  539: *
  540:       DO 370 I = ILO, IHI
  541:          CALL DSCAL( N-ILO+1, LSCALE( I ), A( I, ILO ), LDA )
  542:          CALL DSCAL( N-ILO+1, LSCALE( I ), B( I, ILO ), LDB )
  543:   370 CONTINUE
  544: *
  545: *     Column scaling of matrices A and B
  546: *
  547:       DO 380 J = ILO, IHI
  548:          CALL DSCAL( IHI, RSCALE( J ), A( 1, J ), 1 )
  549:          CALL DSCAL( IHI, RSCALE( J ), B( 1, J ), 1 )
  550:   380 CONTINUE
  551: *
  552:       RETURN
  553: *
  554: *     End of DGGBAL
  555: *
  556:       END

CVSweb interface <joel.bertrand@systella.fr>