Annotation of rpl/lapack/lapack/dggbak.f, revision 1.18

1.8       bertrand    1: *> \brief \b DGGBAK
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DGGBAK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggbak.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggbak.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggbak.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
                     22: *                          LDV, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOB, SIDE
                     26: *       INTEGER            IHI, ILO, INFO, LDV, M, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   LSCALE( * ), RSCALE( * ), V( LDV, * )
                     30: *       ..
1.15      bertrand   31: *
1.8       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DGGBAK forms the right or left eigenvectors of a real generalized
                     39: *> eigenvalue problem A*x = lambda*B*x, by backward transformation on
                     40: *> the computed eigenvectors of the balanced pair of matrices output by
                     41: *> DGGBAL.
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] JOB
                     48: *> \verbatim
                     49: *>          JOB is CHARACTER*1
                     50: *>          Specifies the type of backward transformation required:
                     51: *>          = 'N':  do nothing, return immediately;
                     52: *>          = 'P':  do backward transformation for permutation only;
                     53: *>          = 'S':  do backward transformation for scaling only;
                     54: *>          = 'B':  do backward transformations for both permutation and
                     55: *>                  scaling.
                     56: *>          JOB must be the same as the argument JOB supplied to DGGBAL.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] SIDE
                     60: *> \verbatim
                     61: *>          SIDE is CHARACTER*1
                     62: *>          = 'R':  V contains right eigenvectors;
                     63: *>          = 'L':  V contains left eigenvectors.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] N
                     67: *> \verbatim
                     68: *>          N is INTEGER
                     69: *>          The number of rows of the matrix V.  N >= 0.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] ILO
                     73: *> \verbatim
                     74: *>          ILO is INTEGER
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] IHI
                     78: *> \verbatim
                     79: *>          IHI is INTEGER
                     80: *>          The integers ILO and IHI determined by DGGBAL.
                     81: *>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] LSCALE
                     85: *> \verbatim
                     86: *>          LSCALE is DOUBLE PRECISION array, dimension (N)
                     87: *>          Details of the permutations and/or scaling factors applied
                     88: *>          to the left side of A and B, as returned by DGGBAL.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] RSCALE
                     92: *> \verbatim
                     93: *>          RSCALE is DOUBLE PRECISION array, dimension (N)
                     94: *>          Details of the permutations and/or scaling factors applied
                     95: *>          to the right side of A and B, as returned by DGGBAL.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] M
                     99: *> \verbatim
                    100: *>          M is INTEGER
                    101: *>          The number of columns of the matrix V.  M >= 0.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in,out] V
                    105: *> \verbatim
                    106: *>          V is DOUBLE PRECISION array, dimension (LDV,M)
                    107: *>          On entry, the matrix of right or left eigenvectors to be
                    108: *>          transformed, as returned by DTGEVC.
                    109: *>          On exit, V is overwritten by the transformed eigenvectors.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDV
                    113: *> \verbatim
                    114: *>          LDV is INTEGER
                    115: *>          The leading dimension of the matrix V. LDV >= max(1,N).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[out] INFO
                    119: *> \verbatim
                    120: *>          INFO is INTEGER
                    121: *>          = 0:  successful exit.
                    122: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    123: *> \endverbatim
                    124: *
                    125: *  Authors:
                    126: *  ========
                    127: *
1.15      bertrand  128: *> \author Univ. of Tennessee
                    129: *> \author Univ. of California Berkeley
                    130: *> \author Univ. of Colorado Denver
                    131: *> \author NAG Ltd.
1.8       bertrand  132: *
                    133: *> \ingroup doubleGBcomputational
                    134: *
                    135: *> \par Further Details:
                    136: *  =====================
                    137: *>
                    138: *> \verbatim
                    139: *>
                    140: *>  See R.C. Ward, Balancing the generalized eigenvalue problem,
                    141: *>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
                    142: *> \endverbatim
                    143: *>
                    144: *  =====================================================================
1.1       bertrand  145:       SUBROUTINE DGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
                    146:      $                   LDV, INFO )
                    147: *
1.18    ! bertrand  148: *  -- LAPACK computational routine --
1.1       bertrand  149: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    150: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    151: *
                    152: *     .. Scalar Arguments ..
                    153:       CHARACTER          JOB, SIDE
                    154:       INTEGER            IHI, ILO, INFO, LDV, M, N
                    155: *     ..
                    156: *     .. Array Arguments ..
                    157:       DOUBLE PRECISION   LSCALE( * ), RSCALE( * ), V( LDV, * )
                    158: *     ..
                    159: *
                    160: *  =====================================================================
                    161: *
                    162: *     .. Local Scalars ..
                    163:       LOGICAL            LEFTV, RIGHTV
                    164:       INTEGER            I, K
                    165: *     ..
                    166: *     .. External Functions ..
                    167:       LOGICAL            LSAME
                    168:       EXTERNAL           LSAME
                    169: *     ..
                    170: *     .. External Subroutines ..
                    171:       EXTERNAL           DSCAL, DSWAP, XERBLA
                    172: *     ..
                    173: *     .. Intrinsic Functions ..
1.13      bertrand  174:       INTRINSIC          MAX, INT
1.1       bertrand  175: *     ..
                    176: *     .. Executable Statements ..
                    177: *
                    178: *     Test the input parameters
                    179: *
                    180:       RIGHTV = LSAME( SIDE, 'R' )
                    181:       LEFTV = LSAME( SIDE, 'L' )
                    182: *
                    183:       INFO = 0
                    184:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
                    185:      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
                    186:          INFO = -1
                    187:       ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
                    188:          INFO = -2
                    189:       ELSE IF( N.LT.0 ) THEN
                    190:          INFO = -3
                    191:       ELSE IF( ILO.LT.1 ) THEN
                    192:          INFO = -4
                    193:       ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
                    194:          INFO = -4
                    195:       ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
                    196:      $   THEN
                    197:          INFO = -5
                    198:       ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
                    199:          INFO = -5
                    200:       ELSE IF( M.LT.0 ) THEN
                    201:          INFO = -8
                    202:       ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
                    203:          INFO = -10
                    204:       END IF
                    205:       IF( INFO.NE.0 ) THEN
                    206:          CALL XERBLA( 'DGGBAK', -INFO )
                    207:          RETURN
                    208:       END IF
                    209: *
                    210: *     Quick return if possible
                    211: *
                    212:       IF( N.EQ.0 )
                    213:      $   RETURN
                    214:       IF( M.EQ.0 )
                    215:      $   RETURN
                    216:       IF( LSAME( JOB, 'N' ) )
                    217:      $   RETURN
                    218: *
                    219:       IF( ILO.EQ.IHI )
                    220:      $   GO TO 30
                    221: *
                    222: *     Backward balance
                    223: *
                    224:       IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
                    225: *
                    226: *        Backward transformation on right eigenvectors
                    227: *
                    228:          IF( RIGHTV ) THEN
                    229:             DO 10 I = ILO, IHI
                    230:                CALL DSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
                    231:    10       CONTINUE
                    232:          END IF
                    233: *
                    234: *        Backward transformation on left eigenvectors
                    235: *
                    236:          IF( LEFTV ) THEN
                    237:             DO 20 I = ILO, IHI
                    238:                CALL DSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
                    239:    20       CONTINUE
                    240:          END IF
                    241:       END IF
                    242: *
                    243: *     Backward permutation
                    244: *
                    245:    30 CONTINUE
                    246:       IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
                    247: *
                    248: *        Backward permutation on right eigenvectors
                    249: *
                    250:          IF( RIGHTV ) THEN
                    251:             IF( ILO.EQ.1 )
                    252:      $         GO TO 50
                    253: *
                    254:             DO 40 I = ILO - 1, 1, -1
1.13      bertrand  255:                K = INT(RSCALE( I ))
1.1       bertrand  256:                IF( K.EQ.I )
                    257:      $            GO TO 40
                    258:                CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
                    259:    40       CONTINUE
                    260: *
                    261:    50       CONTINUE
                    262:             IF( IHI.EQ.N )
                    263:      $         GO TO 70
                    264:             DO 60 I = IHI + 1, N
1.13      bertrand  265:                K = INT(RSCALE( I ))
1.1       bertrand  266:                IF( K.EQ.I )
                    267:      $            GO TO 60
                    268:                CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
                    269:    60       CONTINUE
                    270:          END IF
                    271: *
                    272: *        Backward permutation on left eigenvectors
                    273: *
                    274:    70    CONTINUE
                    275:          IF( LEFTV ) THEN
                    276:             IF( ILO.EQ.1 )
                    277:      $         GO TO 90
                    278:             DO 80 I = ILO - 1, 1, -1
1.13      bertrand  279:                K = INT(LSCALE( I ))
1.1       bertrand  280:                IF( K.EQ.I )
                    281:      $            GO TO 80
                    282:                CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
                    283:    80       CONTINUE
                    284: *
                    285:    90       CONTINUE
                    286:             IF( IHI.EQ.N )
                    287:      $         GO TO 110
                    288:             DO 100 I = IHI + 1, N
1.13      bertrand  289:                K = INT(LSCALE( I ))
1.1       bertrand  290:                IF( K.EQ.I )
                    291:      $            GO TO 100
                    292:                CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
                    293:   100       CONTINUE
                    294:          END IF
                    295:       END IF
                    296: *
                    297:   110 CONTINUE
                    298: *
                    299:       RETURN
                    300: *
                    301: *     End of DGGBAK
                    302: *
                    303:       END

CVSweb interface <joel.bertrand@systella.fr>