File:  [local] / rpl / lapack / lapack / dgetsls.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:50 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DGETSLS
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *       SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
    7: *     $                     WORK, LWORK, INFO )
    8: *
    9: *       .. Scalar Arguments ..
   10: *       CHARACTER          TRANS
   11: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
   12: *       ..
   13: *       .. Array Arguments ..
   14: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
   15: *       ..
   16: *
   17: *
   18: *> \par Purpose:
   19: *  =============
   20: *>
   21: *> \verbatim
   22: *>
   23: *> DGETSLS solves overdetermined or underdetermined real linear systems
   24: *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
   25: *> factorization of A.  It is assumed that A has full rank.
   26: *>
   27: *>
   28: *>
   29: *> The following options are provided:
   30: *>
   31: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
   32: *>    an overdetermined system, i.e., solve the least squares problem
   33: *>                 minimize || B - A*X ||.
   34: *>
   35: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
   36: *>    an underdetermined system A * X = B.
   37: *>
   38: *> 3. If TRANS = 'T' and m >= n:  find the minimum norm solution of
   39: *>    an undetermined system A**T * X = B.
   40: *>
   41: *> 4. If TRANS = 'T' and m < n:  find the least squares solution of
   42: *>    an overdetermined system, i.e., solve the least squares problem
   43: *>                 minimize || B - A**T * X ||.
   44: *>
   45: *> Several right hand side vectors b and solution vectors x can be
   46: *> handled in a single call; they are stored as the columns of the
   47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   48: *> matrix X.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] TRANS
   55: *> \verbatim
   56: *>          TRANS is CHARACTER*1
   57: *>          = 'N': the linear system involves A;
   58: *>          = 'T': the linear system involves A**T.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] M
   62: *> \verbatim
   63: *>          M is INTEGER
   64: *>          The number of rows of the matrix A.  M >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The number of columns of the matrix A.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] NRHS
   74: *> \verbatim
   75: *>          NRHS is INTEGER
   76: *>          The number of right hand sides, i.e., the number of
   77: *>          columns of the matrices B and X. NRHS >=0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] A
   81: *> \verbatim
   82: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   83: *>          On entry, the M-by-N matrix A.
   84: *>          On exit,
   85: *>          A is overwritten by details of its QR or LQ
   86: *>          factorization as returned by DGEQR or DGELQ.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDA
   90: *> \verbatim
   91: *>          LDA is INTEGER
   92: *>          The leading dimension of the array A.  LDA >= max(1,M).
   93: *> \endverbatim
   94: *>
   95: *> \param[in,out] B
   96: *> \verbatim
   97: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   98: *>          On entry, the matrix B of right hand side vectors, stored
   99: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  100: *>          if TRANS = 'T'.
  101: *>          On exit, if INFO = 0, B is overwritten by the solution
  102: *>          vectors, stored columnwise:
  103: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  104: *>          squares solution vectors.
  105: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
  106: *>          minimum norm solution vectors;
  107: *>          if TRANS = 'T' and m >= n, rows 1 to M of B contain the
  108: *>          minimum norm solution vectors;
  109: *>          if TRANS = 'T' and m < n, rows 1 to M of B contain the
  110: *>          least squares solution vectors.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDB
  114: *> \verbatim
  115: *>          LDB is INTEGER
  116: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
  117: *> \endverbatim
  118: *>
  119: *> \param[out] WORK
  120: *> \verbatim
  121: *>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  122: *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
  123: *>          or optimal, if query was assumed) LWORK.
  124: *>          See LWORK for details.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LWORK
  128: *> \verbatim
  129: *>          LWORK is INTEGER
  130: *>          The dimension of the array WORK.
  131: *>          If LWORK = -1 or -2, then a workspace query is assumed.
  132: *>          If LWORK = -1, the routine calculates optimal size of WORK for the
  133: *>          optimal performance and returns this value in WORK(1).
  134: *>          If LWORK = -2, the routine calculates minimal size of WORK and 
  135: *>          returns this value in WORK(1).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] INFO
  139: *> \verbatim
  140: *>          INFO is INTEGER
  141: *>          = 0:  successful exit
  142: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  143: *>          > 0:  if INFO =  i, the i-th diagonal element of the
  144: *>                triangular factor of A is zero, so that A does not have
  145: *>                full rank; the least squares solution could not be
  146: *>                computed.
  147: *> \endverbatim
  148: *
  149: *  Authors:
  150: *  ========
  151: *
  152: *> \author Univ. of Tennessee
  153: *> \author Univ. of California Berkeley
  154: *> \author Univ. of Colorado Denver
  155: *> \author NAG Ltd.
  156: *
  157: *> \ingroup doubleGEsolve
  158: *
  159: *  =====================================================================
  160:       SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  161:      $                    WORK, LWORK, INFO )
  162: *
  163: *  -- LAPACK driver routine --
  164: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  165: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  166: *
  167: *     .. Scalar Arguments ..
  168:       CHARACTER          TRANS
  169:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
  170: *     ..
  171: *     .. Array Arguments ..
  172:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
  173: *
  174: *     ..
  175: *
  176: *  =====================================================================
  177: *
  178: *     .. Parameters ..
  179:       DOUBLE PRECISION   ZERO, ONE
  180:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  181: *     ..
  182: *     .. Local Scalars ..
  183:       LOGICAL            LQUERY, TRAN
  184:       INTEGER            I, IASCL, IBSCL, J, MAXMN, BROW,
  185:      $                   SCLLEN, TSZO, TSZM, LWO, LWM, LW1, LW2,
  186:      $                   WSIZEO, WSIZEM, INFO2
  187:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM, TQ( 5 ), WORKQ( 1 )
  188: *     ..
  189: *     .. External Functions ..
  190:       LOGICAL            LSAME
  191:       DOUBLE PRECISION   DLAMCH, DLANGE
  192:       EXTERNAL           LSAME, DLABAD, DLAMCH, DLANGE
  193: *     ..
  194: *     .. External Subroutines ..
  195:       EXTERNAL           DGEQR, DGEMQR, DLASCL, DLASET,
  196:      $                   DTRTRS, XERBLA, DGELQ, DGEMLQ
  197: *     ..
  198: *     .. Intrinsic Functions ..
  199:       INTRINSIC          DBLE, MAX, MIN, INT
  200: *     ..
  201: *     .. Executable Statements ..
  202: *
  203: *     Test the input arguments.
  204: *
  205:       INFO = 0
  206:       MAXMN = MAX( M, N )
  207:       TRAN  = LSAME( TRANS, 'T' )
  208: *
  209:       LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  210:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
  211:      $    LSAME( TRANS, 'T' ) ) ) THEN
  212:          INFO = -1
  213:       ELSE IF( M.LT.0 ) THEN
  214:          INFO = -2
  215:       ELSE IF( N.LT.0 ) THEN
  216:          INFO = -3
  217:       ELSE IF( NRHS.LT.0 ) THEN
  218:          INFO = -4
  219:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  220:          INFO = -6
  221:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  222:          INFO = -8
  223:       END IF
  224: *
  225:       IF( INFO.EQ.0 ) THEN
  226: *
  227: *     Determine the optimum and minimum LWORK
  228: *
  229:        IF( M.GE.N ) THEN
  230:          CALL DGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  231:          TSZO = INT( TQ( 1 ) )
  232:          LWO  = INT( WORKQ( 1 ) )
  233:          CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  234:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  235:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
  236:          CALL DGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  237:          TSZM = INT( TQ( 1 ) )
  238:          LWM  = INT( WORKQ( 1 ) )
  239:          CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  240:      $                TSZM, B, LDB, WORKQ, -1, INFO2 )
  241:          LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  242:          WSIZEO = TSZO + LWO
  243:          WSIZEM = TSZM + LWM
  244:        ELSE
  245:          CALL DGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  246:          TSZO = INT( TQ( 1 ) )
  247:          LWO  = INT( WORKQ( 1 ) )
  248:          CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  249:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  250:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
  251:          CALL DGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  252:          TSZM = INT( TQ( 1 ) )
  253:          LWM  = INT( WORKQ( 1 ) )
  254:          CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  255:      $                TSZM, B, LDB, WORKQ, -1, INFO2 )
  256:          LWM  = MAX( LWM, INT( WORKQ( 1 ) ) )
  257:          WSIZEO = TSZO + LWO
  258:          WSIZEM = TSZM + LWM
  259:        END IF
  260: *
  261:        IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
  262:           INFO = -10
  263:        END IF
  264: *
  265:        WORK( 1 ) = DBLE( WSIZEO )
  266: *
  267:       END IF
  268: *
  269:       IF( INFO.NE.0 ) THEN
  270:         CALL XERBLA( 'DGETSLS', -INFO )
  271:         RETURN
  272:       END IF
  273:       IF( LQUERY ) THEN
  274:         IF( LWORK.EQ.-2 ) WORK( 1 ) = DBLE( WSIZEM )
  275:         RETURN
  276:       END IF
  277:       IF( LWORK.LT.WSIZEO ) THEN
  278:         LW1 = TSZM
  279:         LW2 = LWM
  280:       ELSE
  281:         LW1 = TSZO
  282:         LW2 = LWO
  283:       END IF
  284: *
  285: *     Quick return if possible
  286: *
  287:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  288:            CALL DLASET( 'FULL', MAX( M, N ), NRHS, ZERO, ZERO,
  289:      $                  B, LDB )
  290:            RETURN
  291:       END IF
  292: *
  293: *     Get machine parameters
  294: *
  295:        SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  296:        BIGNUM = ONE / SMLNUM
  297:        CALL DLABAD( SMLNUM, BIGNUM )
  298: *
  299: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
  300: *
  301:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  302:       IASCL = 0
  303:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  304: *
  305: *        Scale matrix norm up to SMLNUM
  306: *
  307:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  308:          IASCL = 1
  309:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  310: *
  311: *        Scale matrix norm down to BIGNUM
  312: *
  313:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  314:          IASCL = 2
  315:       ELSE IF( ANRM.EQ.ZERO ) THEN
  316: *
  317: *        Matrix all zero. Return zero solution.
  318: *
  319:          CALL DLASET( 'F', MAXMN, NRHS, ZERO, ZERO, B, LDB )
  320:          GO TO 50
  321:       END IF
  322: *
  323:       BROW = M
  324:       IF ( TRAN ) THEN
  325:         BROW = N
  326:       END IF
  327:       BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, WORK )
  328:       IBSCL = 0
  329:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  330: *
  331: *        Scale matrix norm up to SMLNUM
  332: *
  333:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  334:      $                INFO )
  335:          IBSCL = 1
  336:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  337: *
  338: *        Scale matrix norm down to BIGNUM
  339: *
  340:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  341:      $                INFO )
  342:          IBSCL = 2
  343:       END IF
  344: *
  345:       IF ( M.GE.N ) THEN
  346: *
  347: *        compute QR factorization of A
  348: *
  349:         CALL DGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
  350:      $              WORK( 1 ), LW2, INFO )
  351:         IF ( .NOT.TRAN ) THEN
  352: *
  353: *           Least-Squares Problem min || A * X - B ||
  354: *
  355: *           B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  356: *
  357:           CALL DGEMQR( 'L' , 'T', M, NRHS, N, A, LDA,
  358:      $                 WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  359:      $                 INFO )
  360: *
  361: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  362: *
  363:           CALL DTRTRS( 'U', 'N', 'N', N, NRHS,
  364:      $                  A, LDA, B, LDB, INFO )
  365:           IF( INFO.GT.0 ) THEN
  366:             RETURN
  367:           END IF
  368:           SCLLEN = N
  369:         ELSE
  370: *
  371: *           Overdetermined system of equations A**T * X = B
  372: *
  373: *           B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  374: *
  375:             CALL DTRTRS( 'U', 'T', 'N', N, NRHS,
  376:      $                   A, LDA, B, LDB, INFO )
  377: *
  378:             IF( INFO.GT.0 ) THEN
  379:                RETURN
  380:             END IF
  381: *
  382: *           B(N+1:M,1:NRHS) = ZERO
  383: *
  384:             DO 20 J = 1, NRHS
  385:                DO 10 I = N + 1, M
  386:                   B( I, J ) = ZERO
  387:    10          CONTINUE
  388:    20       CONTINUE
  389: *
  390: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  391: *
  392:             CALL DGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
  393:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  394:      $                   INFO )
  395: *
  396:             SCLLEN = M
  397: *
  398:          END IF
  399: *
  400:       ELSE
  401: *
  402: *        Compute LQ factorization of A
  403: *
  404:          CALL DGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
  405:      $               WORK( 1 ), LW2, INFO )
  406: *
  407: *        workspace at least M, optimally M*NB.
  408: *
  409:          IF( .NOT.TRAN ) THEN
  410: *
  411: *           underdetermined system of equations A * X = B
  412: *
  413: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  414: *
  415:             CALL DTRTRS( 'L', 'N', 'N', M, NRHS,
  416:      $                   A, LDA, B, LDB, INFO )
  417: *
  418:             IF( INFO.GT.0 ) THEN
  419:                RETURN
  420:             END IF
  421: *
  422: *           B(M+1:N,1:NRHS) = 0
  423: *
  424:             DO 40 J = 1, NRHS
  425:                DO 30 I = M + 1, N
  426:                   B( I, J ) = ZERO
  427:    30          CONTINUE
  428:    40       CONTINUE
  429: *
  430: *           B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  431: *
  432:             CALL DGEMLQ( 'L', 'T', N, NRHS, M, A, LDA,
  433:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  434:      $                   INFO )
  435: *
  436: *           workspace at least NRHS, optimally NRHS*NB
  437: *
  438:             SCLLEN = N
  439: *
  440:          ELSE
  441: *
  442: *           overdetermined system min || A**T * X - B ||
  443: *
  444: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  445: *
  446:             CALL DGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
  447:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  448:      $                   INFO )
  449: *
  450: *           workspace at least NRHS, optimally NRHS*NB
  451: *
  452: *           B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  453: *
  454:             CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
  455:      $                   A, LDA, B, LDB, INFO )
  456: *
  457:             IF( INFO.GT.0 ) THEN
  458:                RETURN
  459:             END IF
  460: *
  461:             SCLLEN = M
  462: *
  463:          END IF
  464: *
  465:       END IF
  466: *
  467: *     Undo scaling
  468: *
  469:       IF( IASCL.EQ.1 ) THEN
  470:         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  471:      $               INFO )
  472:       ELSE IF( IASCL.EQ.2 ) THEN
  473:         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  474:      $               INFO )
  475:       END IF
  476:       IF( IBSCL.EQ.1 ) THEN
  477:         CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  478:      $               INFO )
  479:       ELSE IF( IBSCL.EQ.2 ) THEN
  480:         CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  481:      $               INFO )
  482:       END IF
  483: *
  484:    50 CONTINUE
  485:       WORK( 1 ) = DBLE( TSZO + LWO )
  486:       RETURN
  487: *
  488: *     End of DGETSLS
  489: *
  490:       END

CVSweb interface <joel.bertrand@systella.fr>