File:  [local] / rpl / lapack / lapack / dgetsls.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:45:57 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DGETSLS
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *       SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
    7: *     $                     WORK, LWORK, INFO )
    8: *
    9: *       .. Scalar Arguments ..
   10: *       CHARACTER          TRANS
   11: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
   12: *       ..
   13: *       .. Array Arguments ..
   14: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
   15: *       ..
   16: *
   17: *
   18: *> \par Purpose:
   19: *  =============
   20: *>
   21: *> \verbatim
   22: *>
   23: *> DGETSLS solves overdetermined or underdetermined real linear systems
   24: *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
   25: *> factorization of A.  It is assumed that A has full rank.
   26: *>
   27: *>
   28: *>
   29: *> The following options are provided:
   30: *>
   31: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
   32: *>    an overdetermined system, i.e., solve the least squares problem
   33: *>                 minimize || B - A*X ||.
   34: *>
   35: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
   36: *>    an underdetermined system A * X = B.
   37: *>
   38: *> 3. If TRANS = 'T' and m >= n:  find the minimum norm solution of
   39: *>    an undetermined system A**T * X = B.
   40: *>
   41: *> 4. If TRANS = 'T' and m < n:  find the least squares solution of
   42: *>    an overdetermined system, i.e., solve the least squares problem
   43: *>                 minimize || B - A**T * X ||.
   44: *>
   45: *> Several right hand side vectors b and solution vectors x can be
   46: *> handled in a single call; they are stored as the columns of the
   47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   48: *> matrix X.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] TRANS
   55: *> \verbatim
   56: *>          TRANS is CHARACTER*1
   57: *>          = 'N': the linear system involves A;
   58: *>          = 'T': the linear system involves A**T.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] M
   62: *> \verbatim
   63: *>          M is INTEGER
   64: *>          The number of rows of the matrix A.  M >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The number of columns of the matrix A.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] NRHS
   74: *> \verbatim
   75: *>          NRHS is INTEGER
   76: *>          The number of right hand sides, i.e., the number of
   77: *>          columns of the matrices B and X. NRHS >=0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] A
   81: *> \verbatim
   82: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   83: *>          On entry, the M-by-N matrix A.
   84: *>          On exit,
   85: *>          A is overwritten by details of its QR or LQ
   86: *>          factorization as returned by DGEQR or DGELQ.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDA
   90: *> \verbatim
   91: *>          LDA is INTEGER
   92: *>          The leading dimension of the array A.  LDA >= max(1,M).
   93: *> \endverbatim
   94: *>
   95: *> \param[in,out] B
   96: *> \verbatim
   97: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   98: *>          On entry, the matrix B of right hand side vectors, stored
   99: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  100: *>          if TRANS = 'T'.
  101: *>          On exit, if INFO = 0, B is overwritten by the solution
  102: *>          vectors, stored columnwise:
  103: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  104: *>          squares solution vectors.
  105: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
  106: *>          minimum norm solution vectors;
  107: *>          if TRANS = 'T' and m >= n, rows 1 to M of B contain the
  108: *>          minimum norm solution vectors;
  109: *>          if TRANS = 'T' and m < n, rows 1 to M of B contain the
  110: *>          least squares solution vectors.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDB
  114: *> \verbatim
  115: *>          LDB is INTEGER
  116: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
  117: *> \endverbatim
  118: *>
  119: *> \param[out] WORK
  120: *> \verbatim
  121: *>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  122: *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
  123: *>          or optimal, if query was assumed) LWORK.
  124: *>          See LWORK for details.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LWORK
  128: *> \verbatim
  129: *>          LWORK is INTEGER
  130: *>          The dimension of the array WORK.
  131: *>          If LWORK = -1 or -2, then a workspace query is assumed.
  132: *>          If LWORK = -1, the routine calculates optimal size of WORK for the
  133: *>          optimal performance and returns this value in WORK(1).
  134: *>          If LWORK = -2, the routine calculates minimal size of WORK and 
  135: *>          returns this value in WORK(1).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] INFO
  139: *> \verbatim
  140: *>          INFO is INTEGER
  141: *>          = 0:  successful exit
  142: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  143: *>          > 0:  if INFO =  i, the i-th diagonal element of the
  144: *>                triangular factor of A is zero, so that A does not have
  145: *>                full rank; the least squares solution could not be
  146: *>                computed.
  147: *> \endverbatim
  148: *
  149: *  Authors:
  150: *  ========
  151: *
  152: *> \author Univ. of Tennessee
  153: *> \author Univ. of California Berkeley
  154: *> \author Univ. of Colorado Denver
  155: *> \author NAG Ltd.
  156: *
  157: *> \date June 2017
  158: *
  159: *> \ingroup doubleGEsolve
  160: *
  161: *  =====================================================================
  162:       SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  163:      $                    WORK, LWORK, INFO )
  164: *
  165: *  -- LAPACK driver routine (version 3.7.1) --
  166: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  167: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  168: *     June 2017
  169: *
  170: *     .. Scalar Arguments ..
  171:       CHARACTER          TRANS
  172:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
  173: *     ..
  174: *     .. Array Arguments ..
  175:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
  176: *
  177: *     ..
  178: *
  179: *  =====================================================================
  180: *
  181: *     .. Parameters ..
  182:       DOUBLE PRECISION   ZERO, ONE
  183:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  184: *     ..
  185: *     .. Local Scalars ..
  186:       LOGICAL            LQUERY, TRAN
  187:       INTEGER            I, IASCL, IBSCL, J, MINMN, MAXMN, BROW,
  188:      $                   SCLLEN, MNK, TSZO, TSZM, LWO, LWM, LW1, LW2,
  189:      $                   WSIZEO, WSIZEM, INFO2
  190:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM, TQ( 5 ), WORKQ( 1 )
  191: *     ..
  192: *     .. External Functions ..
  193:       LOGICAL            LSAME
  194:       INTEGER            ILAENV
  195:       DOUBLE PRECISION   DLAMCH, DLANGE
  196:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
  197: *     ..
  198: *     .. External Subroutines ..
  199:       EXTERNAL           DGEQR, DGEMQR, DLASCL, DLASET,
  200:      $                   DTRTRS, XERBLA, DGELQ, DGEMLQ
  201: *     ..
  202: *     .. Intrinsic Functions ..
  203:       INTRINSIC          DBLE, MAX, MIN, INT
  204: *     ..
  205: *     .. Executable Statements ..
  206: *
  207: *     Test the input arguments.
  208: *
  209:       INFO = 0
  210:       MINMN = MIN( M, N )
  211:       MAXMN = MAX( M, N )
  212:       MNK   = MAX( MINMN, NRHS )
  213:       TRAN  = LSAME( TRANS, 'T' )
  214: *
  215:       LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  216:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
  217:      $    LSAME( TRANS, 'T' ) ) ) THEN
  218:          INFO = -1
  219:       ELSE IF( M.LT.0 ) THEN
  220:          INFO = -2
  221:       ELSE IF( N.LT.0 ) THEN
  222:          INFO = -3
  223:       ELSE IF( NRHS.LT.0 ) THEN
  224:          INFO = -4
  225:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  226:          INFO = -6
  227:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  228:          INFO = -8
  229:       END IF
  230: *
  231:       IF( INFO.EQ.0 ) THEN
  232: *
  233: *     Determine the block size and minimum LWORK
  234: *
  235:        IF( M.GE.N ) THEN
  236:          CALL DGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  237:          TSZO = INT( TQ( 1 ) )
  238:          LWO  = INT( WORKQ( 1 ) )
  239:          CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  240:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  241:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
  242:          CALL DGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  243:          TSZM = INT( TQ( 1 ) )
  244:          LWM  = INT( WORKQ( 1 ) )
  245:          CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  246:      $                TSZM, B, LDB, WORKQ, -1, INFO2 )
  247:          LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  248:          WSIZEO = TSZO + LWO
  249:          WSIZEM = TSZM + LWM
  250:        ELSE
  251:          CALL DGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  252:          TSZO = INT( TQ( 1 ) )
  253:          LWO  = INT( WORKQ( 1 ) )
  254:          CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  255:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  256:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
  257:          CALL DGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  258:          TSZM = INT( TQ( 1 ) )
  259:          LWM  = INT( WORKQ( 1 ) )
  260:          CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  261:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  262:          LWM  = MAX( LWM, INT( WORKQ( 1 ) ) )
  263:          WSIZEO = TSZO + LWO
  264:          WSIZEM = TSZM + LWM
  265:        END IF
  266: *
  267:        IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
  268:           INFO = -10
  269:        END IF
  270: *
  271:       END IF
  272: *
  273:       IF( INFO.NE.0 ) THEN
  274:         CALL XERBLA( 'DGETSLS', -INFO )
  275:         WORK( 1 ) = DBLE( WSIZEO )
  276:         RETURN
  277:       END IF
  278:       IF( LQUERY ) THEN
  279:         IF( LWORK.EQ.-1 ) WORK( 1 ) = REAL( WSIZEO )
  280:         IF( LWORK.EQ.-2 ) WORK( 1 ) = REAL( WSIZEM )
  281:         RETURN
  282:       END IF
  283:       IF( LWORK.LT.WSIZEO ) THEN
  284:         LW1 = TSZM
  285:         LW2 = LWM
  286:       ELSE
  287:         LW1 = TSZO
  288:         LW2 = LWO
  289:       END IF
  290: *
  291: *     Quick return if possible
  292: *
  293:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  294:            CALL DLASET( 'FULL', MAX( M, N ), NRHS, ZERO, ZERO,
  295:      $                  B, LDB )
  296:            RETURN
  297:       END IF
  298: *
  299: *     Get machine parameters
  300: *
  301:        SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  302:        BIGNUM = ONE / SMLNUM
  303:        CALL DLABAD( SMLNUM, BIGNUM )
  304: *
  305: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
  306: *
  307:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  308:       IASCL = 0
  309:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  310: *
  311: *        Scale matrix norm up to SMLNUM
  312: *
  313:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  314:          IASCL = 1
  315:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  316: *
  317: *        Scale matrix norm down to BIGNUM
  318: *
  319:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  320:          IASCL = 2
  321:       ELSE IF( ANRM.EQ.ZERO ) THEN
  322: *
  323: *        Matrix all zero. Return zero solution.
  324: *
  325:          CALL DLASET( 'F', MAXMN, NRHS, ZERO, ZERO, B, LDB )
  326:          GO TO 50
  327:       END IF
  328: *
  329:       BROW = M
  330:       IF ( TRAN ) THEN
  331:         BROW = N
  332:       END IF
  333:       BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, WORK )
  334:       IBSCL = 0
  335:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  336: *
  337: *        Scale matrix norm up to SMLNUM
  338: *
  339:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  340:      $                INFO )
  341:          IBSCL = 1
  342:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  343: *
  344: *        Scale matrix norm down to BIGNUM
  345: *
  346:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  347:      $                INFO )
  348:          IBSCL = 2
  349:       END IF
  350: *
  351:       IF ( M.GE.N ) THEN
  352: *
  353: *        compute QR factorization of A
  354: *
  355:         CALL DGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
  356:      $              WORK( 1 ), LW2, INFO )
  357:         IF ( .NOT.TRAN ) THEN
  358: *
  359: *           Least-Squares Problem min || A * X - B ||
  360: *
  361: *           B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  362: *
  363:           CALL DGEMQR( 'L' , 'T', M, NRHS, N, A, LDA,
  364:      $                 WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  365:      $                 INFO )
  366: *
  367: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  368: *
  369:           CALL DTRTRS( 'U', 'N', 'N', N, NRHS,
  370:      $                  A, LDA, B, LDB, INFO )
  371:           IF( INFO.GT.0 ) THEN
  372:             RETURN
  373:           END IF
  374:           SCLLEN = N
  375:         ELSE
  376: *
  377: *           Overdetermined system of equations A**T * X = B
  378: *
  379: *           B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  380: *
  381:             CALL DTRTRS( 'U', 'T', 'N', N, NRHS,
  382:      $                   A, LDA, B, LDB, INFO )
  383: *
  384:             IF( INFO.GT.0 ) THEN
  385:                RETURN
  386:             END IF
  387: *
  388: *           B(N+1:M,1:NRHS) = ZERO
  389: *
  390:             DO 20 J = 1, NRHS
  391:                DO 10 I = N + 1, M
  392:                   B( I, J ) = ZERO
  393:    10          CONTINUE
  394:    20       CONTINUE
  395: *
  396: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  397: *
  398:             CALL DGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
  399:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  400:      $                   INFO )
  401: *
  402:             SCLLEN = M
  403: *
  404:          END IF
  405: *
  406:       ELSE
  407: *
  408: *        Compute LQ factorization of A
  409: *
  410:          CALL DGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
  411:      $               WORK( 1 ), LW2, INFO )
  412: *
  413: *        workspace at least M, optimally M*NB.
  414: *
  415:          IF( .NOT.TRAN ) THEN
  416: *
  417: *           underdetermined system of equations A * X = B
  418: *
  419: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  420: *
  421:             CALL DTRTRS( 'L', 'N', 'N', M, NRHS,
  422:      $                   A, LDA, B, LDB, INFO )
  423: *
  424:             IF( INFO.GT.0 ) THEN
  425:                RETURN
  426:             END IF
  427: *
  428: *           B(M+1:N,1:NRHS) = 0
  429: *
  430:             DO 40 J = 1, NRHS
  431:                DO 30 I = M + 1, N
  432:                   B( I, J ) = ZERO
  433:    30          CONTINUE
  434:    40       CONTINUE
  435: *
  436: *           B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  437: *
  438:             CALL DGEMLQ( 'L', 'T', N, NRHS, M, A, LDA,
  439:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  440:      $                   INFO )
  441: *
  442: *           workspace at least NRHS, optimally NRHS*NB
  443: *
  444:             SCLLEN = N
  445: *
  446:          ELSE
  447: *
  448: *           overdetermined system min || A**T * X - B ||
  449: *
  450: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  451: *
  452:             CALL DGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
  453:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  454:      $                   INFO )
  455: *
  456: *           workspace at least NRHS, optimally NRHS*NB
  457: *
  458: *           B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  459: *
  460:             CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
  461:      $                   A, LDA, B, LDB, INFO )
  462: *
  463:             IF( INFO.GT.0 ) THEN
  464:                RETURN
  465:             END IF
  466: *
  467:             SCLLEN = M
  468: *
  469:          END IF
  470: *
  471:       END IF
  472: *
  473: *     Undo scaling
  474: *
  475:       IF( IASCL.EQ.1 ) THEN
  476:         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  477:      $               INFO )
  478:       ELSE IF( IASCL.EQ.2 ) THEN
  479:         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  480:      $               INFO )
  481:       END IF
  482:       IF( IBSCL.EQ.1 ) THEN
  483:         CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  484:      $               INFO )
  485:       ELSE IF( IBSCL.EQ.2 ) THEN
  486:         CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  487:      $               INFO )
  488:       END IF
  489: *
  490:    50 CONTINUE
  491:       WORK( 1 ) = DBLE( TSZO + LWO )
  492:       RETURN
  493: *
  494: *     End of DGETSLS
  495: *
  496:       END

CVSweb interface <joel.bertrand@systella.fr>