File:  [local] / rpl / lapack / lapack / dgetsls.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:17:53 2018 UTC (6 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *  Definition:
    2: *  ===========
    3: *
    4: *       SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
    5: *     $                     WORK, LWORK, INFO )
    6: *
    7: *       .. Scalar Arguments ..
    8: *       CHARACTER          TRANS
    9: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
   10: *       ..
   11: *       .. Array Arguments ..
   12: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
   13: *       ..
   14: *
   15: *
   16: *> \par Purpose:
   17: *  =============
   18: *>
   19: *> \verbatim
   20: *>
   21: *> DGETSLS solves overdetermined or underdetermined real linear systems
   22: *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
   23: *> factorization of A.  It is assumed that A has full rank.
   24: *>
   25: *>
   26: *>
   27: *> The following options are provided:
   28: *>
   29: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
   30: *>    an overdetermined system, i.e., solve the least squares problem
   31: *>                 minimize || B - A*X ||.
   32: *>
   33: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
   34: *>    an underdetermined system A * X = B.
   35: *>
   36: *> 3. If TRANS = 'T' and m >= n:  find the minimum norm solution of
   37: *>    an undetermined system A**T * X = B.
   38: *>
   39: *> 4. If TRANS = 'T' and m < n:  find the least squares solution of
   40: *>    an overdetermined system, i.e., solve the least squares problem
   41: *>                 minimize || B - A**T * X ||.
   42: *>
   43: *> Several right hand side vectors b and solution vectors x can be
   44: *> handled in a single call; they are stored as the columns of the
   45: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   46: *> matrix X.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] TRANS
   53: *> \verbatim
   54: *>          TRANS is CHARACTER*1
   55: *>          = 'N': the linear system involves A;
   56: *>          = 'T': the linear system involves A**T.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] M
   60: *> \verbatim
   61: *>          M is INTEGER
   62: *>          The number of rows of the matrix A.  M >= 0.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The number of columns of the matrix A.  N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] NRHS
   72: *> \verbatim
   73: *>          NRHS is INTEGER
   74: *>          The number of right hand sides, i.e., the number of
   75: *>          columns of the matrices B and X. NRHS >=0.
   76: *> \endverbatim
   77: *>
   78: *> \param[in,out] A
   79: *> \verbatim
   80: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   81: *>          On entry, the M-by-N matrix A.
   82: *>          On exit,
   83: *>          A is overwritten by details of its QR or LQ
   84: *>          factorization as returned by DGEQR or DGELQ.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] LDA
   88: *> \verbatim
   89: *>          LDA is INTEGER
   90: *>          The leading dimension of the array A.  LDA >= max(1,M).
   91: *> \endverbatim
   92: *>
   93: *> \param[in,out] B
   94: *> \verbatim
   95: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   96: *>          On entry, the matrix B of right hand side vectors, stored
   97: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
   98: *>          if TRANS = 'T'.
   99: *>          On exit, if INFO = 0, B is overwritten by the solution
  100: *>          vectors, stored columnwise:
  101: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  102: *>          squares solution vectors.
  103: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
  104: *>          minimum norm solution vectors;
  105: *>          if TRANS = 'T' and m >= n, rows 1 to M of B contain the
  106: *>          minimum norm solution vectors;
  107: *>          if TRANS = 'T' and m < n, rows 1 to M of B contain the
  108: *>          least squares solution vectors.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] LDB
  112: *> \verbatim
  113: *>          LDB is INTEGER
  114: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
  115: *> \endverbatim
  116: *>
  117: *> \param[out] WORK
  118: *> \verbatim
  119: *>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  120: *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
  121: *>          or optimal, if query was assumed) LWORK.
  122: *>          See LWORK for details.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LWORK
  126: *> \verbatim
  127: *>          LWORK is INTEGER
  128: *>          The dimension of the array WORK.
  129: *>          If LWORK = -1 or -2, then a workspace query is assumed.
  130: *>          If LWORK = -1, the routine calculates optimal size of WORK for the
  131: *>          optimal performance and returns this value in WORK(1).
  132: *>          If LWORK = -2, the routine calculates minimal size of WORK and 
  133: *>          returns this value in WORK(1).
  134: *> \endverbatim
  135: *>
  136: *> \param[out] INFO
  137: *> \verbatim
  138: *>          INFO is INTEGER
  139: *>          = 0:  successful exit
  140: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  141: *>          > 0:  if INFO =  i, the i-th diagonal element of the
  142: *>                triangular factor of A is zero, so that A does not have
  143: *>                full rank; the least squares solution could not be
  144: *>                computed.
  145: *> \endverbatim
  146: *
  147: *  Authors:
  148: *  ========
  149: *
  150: *> \author Univ. of Tennessee
  151: *> \author Univ. of California Berkeley
  152: *> \author Univ. of Colorado Denver
  153: *> \author NAG Ltd.
  154: *
  155: *> \date June 2017
  156: *
  157: *> \ingroup doubleGEsolve
  158: *
  159: *  =====================================================================
  160:       SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  161:      $                    WORK, LWORK, INFO )
  162: *
  163: *  -- LAPACK driver routine (version 3.7.1) --
  164: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  165: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  166: *     June 2017
  167: *
  168: *     .. Scalar Arguments ..
  169:       CHARACTER          TRANS
  170:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
  171: *     ..
  172: *     .. Array Arguments ..
  173:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
  174: *
  175: *     ..
  176: *
  177: *  =====================================================================
  178: *
  179: *     .. Parameters ..
  180:       DOUBLE PRECISION   ZERO, ONE
  181:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  182: *     ..
  183: *     .. Local Scalars ..
  184:       LOGICAL            LQUERY, TRAN
  185:       INTEGER            I, IASCL, IBSCL, J, MINMN, MAXMN, BROW,
  186:      $                   SCLLEN, MNK, TSZO, TSZM, LWO, LWM, LW1, LW2,
  187:      $                   WSIZEO, WSIZEM, INFO2
  188:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM, TQ( 5 ), WORKQ( 1 )
  189: *     ..
  190: *     .. External Functions ..
  191:       LOGICAL            LSAME
  192:       INTEGER            ILAENV
  193:       DOUBLE PRECISION   DLAMCH, DLANGE
  194:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
  195: *     ..
  196: *     .. External Subroutines ..
  197:       EXTERNAL           DGEQR, DGEMQR, DLASCL, DLASET,
  198:      $                   DTRTRS, XERBLA, DGELQ, DGEMLQ
  199: *     ..
  200: *     .. Intrinsic Functions ..
  201:       INTRINSIC          DBLE, MAX, MIN, INT
  202: *     ..
  203: *     .. Executable Statements ..
  204: *
  205: *     Test the input arguments.
  206: *
  207:       INFO = 0
  208:       MINMN = MIN( M, N )
  209:       MAXMN = MAX( M, N )
  210:       MNK   = MAX( MINMN, NRHS )
  211:       TRAN  = LSAME( TRANS, 'T' )
  212: *
  213:       LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  214:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
  215:      $    LSAME( TRANS, 'T' ) ) ) THEN
  216:          INFO = -1
  217:       ELSE IF( M.LT.0 ) THEN
  218:          INFO = -2
  219:       ELSE IF( N.LT.0 ) THEN
  220:          INFO = -3
  221:       ELSE IF( NRHS.LT.0 ) THEN
  222:          INFO = -4
  223:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  224:          INFO = -6
  225:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  226:          INFO = -8
  227:       END IF
  228: *
  229:       IF( INFO.EQ.0 ) THEN
  230: *
  231: *     Determine the block size and minimum LWORK
  232: *
  233:        IF( M.GE.N ) THEN
  234:          CALL DGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  235:          TSZO = INT( TQ( 1 ) )
  236:          LWO  = INT( WORKQ( 1 ) )
  237:          CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  238:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  239:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
  240:          CALL DGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  241:          TSZM = INT( TQ( 1 ) )
  242:          LWM  = INT( WORKQ( 1 ) )
  243:          CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  244:      $                TSZM, B, LDB, WORKQ, -1, INFO2 )
  245:          LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  246:          WSIZEO = TSZO + LWO
  247:          WSIZEM = TSZM + LWM
  248:        ELSE
  249:          CALL DGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  250:          TSZO = INT( TQ( 1 ) )
  251:          LWO  = INT( WORKQ( 1 ) )
  252:          CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  253:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  254:          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
  255:          CALL DGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  256:          TSZM = INT( TQ( 1 ) )
  257:          LWM  = INT( WORKQ( 1 ) )
  258:          CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  259:      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
  260:          LWM  = MAX( LWM, INT( WORKQ( 1 ) ) )
  261:          WSIZEO = TSZO + LWO
  262:          WSIZEM = TSZM + LWM
  263:        END IF
  264: *
  265:        IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
  266:           INFO = -10
  267:        END IF
  268: *
  269:       END IF
  270: *
  271:       IF( INFO.NE.0 ) THEN
  272:         CALL XERBLA( 'DGETSLS', -INFO )
  273:         WORK( 1 ) = DBLE( WSIZEO )
  274:         RETURN
  275:       END IF
  276:       IF( LQUERY ) THEN
  277:         IF( LWORK.EQ.-1 ) WORK( 1 ) = REAL( WSIZEO )
  278:         IF( LWORK.EQ.-2 ) WORK( 1 ) = REAL( WSIZEM )
  279:         RETURN
  280:       END IF
  281:       IF( LWORK.LT.WSIZEO ) THEN
  282:         LW1 = TSZM
  283:         LW2 = LWM
  284:       ELSE
  285:         LW1 = TSZO
  286:         LW2 = LWO
  287:       END IF
  288: *
  289: *     Quick return if possible
  290: *
  291:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  292:            CALL DLASET( 'FULL', MAX( M, N ), NRHS, ZERO, ZERO,
  293:      $                  B, LDB )
  294:            RETURN
  295:       END IF
  296: *
  297: *     Get machine parameters
  298: *
  299:        SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  300:        BIGNUM = ONE / SMLNUM
  301:        CALL DLABAD( SMLNUM, BIGNUM )
  302: *
  303: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
  304: *
  305:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  306:       IASCL = 0
  307:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  308: *
  309: *        Scale matrix norm up to SMLNUM
  310: *
  311:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  312:          IASCL = 1
  313:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  314: *
  315: *        Scale matrix norm down to BIGNUM
  316: *
  317:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  318:          IASCL = 2
  319:       ELSE IF( ANRM.EQ.ZERO ) THEN
  320: *
  321: *        Matrix all zero. Return zero solution.
  322: *
  323:          CALL DLASET( 'F', MAXMN, NRHS, ZERO, ZERO, B, LDB )
  324:          GO TO 50
  325:       END IF
  326: *
  327:       BROW = M
  328:       IF ( TRAN ) THEN
  329:         BROW = N
  330:       END IF
  331:       BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, WORK )
  332:       IBSCL = 0
  333:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  334: *
  335: *        Scale matrix norm up to SMLNUM
  336: *
  337:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  338:      $                INFO )
  339:          IBSCL = 1
  340:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  341: *
  342: *        Scale matrix norm down to BIGNUM
  343: *
  344:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  345:      $                INFO )
  346:          IBSCL = 2
  347:       END IF
  348: *
  349:       IF ( M.GE.N ) THEN
  350: *
  351: *        compute QR factorization of A
  352: *
  353:         CALL DGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
  354:      $              WORK( 1 ), LW2, INFO )
  355:         IF ( .NOT.TRAN ) THEN
  356: *
  357: *           Least-Squares Problem min || A * X - B ||
  358: *
  359: *           B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  360: *
  361:           CALL DGEMQR( 'L' , 'T', M, NRHS, N, A, LDA,
  362:      $                 WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  363:      $                 INFO )
  364: *
  365: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  366: *
  367:           CALL DTRTRS( 'U', 'N', 'N', N, NRHS,
  368:      $                  A, LDA, B, LDB, INFO )
  369:           IF( INFO.GT.0 ) THEN
  370:             RETURN
  371:           END IF
  372:           SCLLEN = N
  373:         ELSE
  374: *
  375: *           Overdetermined system of equations A**T * X = B
  376: *
  377: *           B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  378: *
  379:             CALL DTRTRS( 'U', 'T', 'N', N, NRHS,
  380:      $                   A, LDA, B, LDB, INFO )
  381: *
  382:             IF( INFO.GT.0 ) THEN
  383:                RETURN
  384:             END IF
  385: *
  386: *           B(N+1:M,1:NRHS) = ZERO
  387: *
  388:             DO 20 J = 1, NRHS
  389:                DO 10 I = N + 1, M
  390:                   B( I, J ) = ZERO
  391:    10          CONTINUE
  392:    20       CONTINUE
  393: *
  394: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  395: *
  396:             CALL DGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
  397:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  398:      $                   INFO )
  399: *
  400:             SCLLEN = M
  401: *
  402:          END IF
  403: *
  404:       ELSE
  405: *
  406: *        Compute LQ factorization of A
  407: *
  408:          CALL DGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
  409:      $               WORK( 1 ), LW2, INFO )
  410: *
  411: *        workspace at least M, optimally M*NB.
  412: *
  413:          IF( .NOT.TRAN ) THEN
  414: *
  415: *           underdetermined system of equations A * X = B
  416: *
  417: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  418: *
  419:             CALL DTRTRS( 'L', 'N', 'N', M, NRHS,
  420:      $                   A, LDA, B, LDB, INFO )
  421: *
  422:             IF( INFO.GT.0 ) THEN
  423:                RETURN
  424:             END IF
  425: *
  426: *           B(M+1:N,1:NRHS) = 0
  427: *
  428:             DO 40 J = 1, NRHS
  429:                DO 30 I = M + 1, N
  430:                   B( I, J ) = ZERO
  431:    30          CONTINUE
  432:    40       CONTINUE
  433: *
  434: *           B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  435: *
  436:             CALL DGEMLQ( 'L', 'T', N, NRHS, M, A, LDA,
  437:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  438:      $                   INFO )
  439: *
  440: *           workspace at least NRHS, optimally NRHS*NB
  441: *
  442:             SCLLEN = N
  443: *
  444:          ELSE
  445: *
  446: *           overdetermined system min || A**T * X - B ||
  447: *
  448: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  449: *
  450:             CALL DGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
  451:      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  452:      $                   INFO )
  453: *
  454: *           workspace at least NRHS, optimally NRHS*NB
  455: *
  456: *           B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  457: *
  458:             CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
  459:      $                   A, LDA, B, LDB, INFO )
  460: *
  461:             IF( INFO.GT.0 ) THEN
  462:                RETURN
  463:             END IF
  464: *
  465:             SCLLEN = M
  466: *
  467:          END IF
  468: *
  469:       END IF
  470: *
  471: *     Undo scaling
  472: *
  473:       IF( IASCL.EQ.1 ) THEN
  474:         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  475:      $               INFO )
  476:       ELSE IF( IASCL.EQ.2 ) THEN
  477:         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  478:      $               INFO )
  479:       END IF
  480:       IF( IBSCL.EQ.1 ) THEN
  481:         CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  482:      $               INFO )
  483:       ELSE IF( IBSCL.EQ.2 ) THEN
  484:         CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  485:      $               INFO )
  486:       END IF
  487: *
  488:    50 CONTINUE
  489:       WORK( 1 ) = DBLE( TSZO + LWO )
  490:       RETURN
  491: *
  492: *     End of DGETSLS
  493: *
  494:       END

CVSweb interface <joel.bertrand@systella.fr>