Annotation of rpl/lapack/lapack/dgetri.f, revision 1.14

1.8       bertrand    1: *> \brief \b DGETRI
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14    ! bertrand    5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14    ! bertrand    9: *> Download DGETRI + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetri.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetri.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetri.f">
1.8       bertrand   15: *> [TXT]</a>
1.14    ! bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
1.14    ! bertrand   22: *
1.8       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, LWORK, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       INTEGER            IPIV( * )
                     28: *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
                     29: *       ..
1.14    ! bertrand   30: *
1.8       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DGETRI computes the inverse of a matrix using the LU factorization
                     38: *> computed by DGETRF.
                     39: *>
                     40: *> This method inverts U and then computes inv(A) by solving the system
                     41: *> inv(A)*L = inv(U) for inv(A).
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] N
                     48: *> \verbatim
                     49: *>          N is INTEGER
                     50: *>          The order of the matrix A.  N >= 0.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in,out] A
                     54: *> \verbatim
                     55: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     56: *>          On entry, the factors L and U from the factorization
                     57: *>          A = P*L*U as computed by DGETRF.
                     58: *>          On exit, if INFO = 0, the inverse of the original matrix A.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] LDA
                     62: *> \verbatim
                     63: *>          LDA is INTEGER
                     64: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] IPIV
                     68: *> \verbatim
                     69: *>          IPIV is INTEGER array, dimension (N)
                     70: *>          The pivot indices from DGETRF; for 1<=i<=N, row i of the
                     71: *>          matrix was interchanged with row IPIV(i).
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[out] WORK
                     75: *> \verbatim
                     76: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     77: *>          On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] LWORK
                     81: *> \verbatim
                     82: *>          LWORK is INTEGER
                     83: *>          The dimension of the array WORK.  LWORK >= max(1,N).
                     84: *>          For optimal performance LWORK >= N*NB, where NB is
                     85: *>          the optimal blocksize returned by ILAENV.
                     86: *>
                     87: *>          If LWORK = -1, then a workspace query is assumed; the routine
                     88: *>          only calculates the optimal size of the WORK array, returns
                     89: *>          this value as the first entry of the WORK array, and no error
                     90: *>          message related to LWORK is issued by XERBLA.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[out] INFO
                     94: *> \verbatim
                     95: *>          INFO is INTEGER
                     96: *>          = 0:  successful exit
                     97: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                     98: *>          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is
                     99: *>                singular and its inverse could not be computed.
                    100: *> \endverbatim
                    101: *
                    102: *  Authors:
                    103: *  ========
                    104: *
1.14    ! bertrand  105: *> \author Univ. of Tennessee
        !           106: *> \author Univ. of California Berkeley
        !           107: *> \author Univ. of Colorado Denver
        !           108: *> \author NAG Ltd.
1.8       bertrand  109: *
1.14    ! bertrand  110: *> \date December 2016
1.8       bertrand  111: *
                    112: *> \ingroup doubleGEcomputational
                    113: *
                    114: *  =====================================================================
1.1       bertrand  115:       SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
                    116: *
1.14    ! bertrand  117: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  118: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    119: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.14    ! bertrand  120: *     December 2016
1.1       bertrand  121: *
                    122: *     .. Scalar Arguments ..
                    123:       INTEGER            INFO, LDA, LWORK, N
                    124: *     ..
                    125: *     .. Array Arguments ..
                    126:       INTEGER            IPIV( * )
                    127:       DOUBLE PRECISION   A( LDA, * ), WORK( * )
                    128: *     ..
                    129: *
                    130: *  =====================================================================
                    131: *
                    132: *     .. Parameters ..
                    133:       DOUBLE PRECISION   ZERO, ONE
                    134:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    135: *     ..
                    136: *     .. Local Scalars ..
                    137:       LOGICAL            LQUERY
                    138:       INTEGER            I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
                    139:      $                   NBMIN, NN
                    140: *     ..
                    141: *     .. External Functions ..
                    142:       INTEGER            ILAENV
                    143:       EXTERNAL           ILAENV
                    144: *     ..
                    145: *     .. External Subroutines ..
                    146:       EXTERNAL           DGEMM, DGEMV, DSWAP, DTRSM, DTRTRI, XERBLA
                    147: *     ..
                    148: *     .. Intrinsic Functions ..
                    149:       INTRINSIC          MAX, MIN
                    150: *     ..
                    151: *     .. Executable Statements ..
                    152: *
                    153: *     Test the input parameters.
                    154: *
                    155:       INFO = 0
                    156:       NB = ILAENV( 1, 'DGETRI', ' ', N, -1, -1, -1 )
                    157:       LWKOPT = N*NB
                    158:       WORK( 1 ) = LWKOPT
                    159:       LQUERY = ( LWORK.EQ.-1 )
                    160:       IF( N.LT.0 ) THEN
                    161:          INFO = -1
                    162:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    163:          INFO = -3
                    164:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
                    165:          INFO = -6
                    166:       END IF
                    167:       IF( INFO.NE.0 ) THEN
                    168:          CALL XERBLA( 'DGETRI', -INFO )
                    169:          RETURN
                    170:       ELSE IF( LQUERY ) THEN
                    171:          RETURN
                    172:       END IF
                    173: *
                    174: *     Quick return if possible
                    175: *
                    176:       IF( N.EQ.0 )
                    177:      $   RETURN
                    178: *
                    179: *     Form inv(U).  If INFO > 0 from DTRTRI, then U is singular,
                    180: *     and the inverse is not computed.
                    181: *
                    182:       CALL DTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
                    183:       IF( INFO.GT.0 )
                    184:      $   RETURN
                    185: *
                    186:       NBMIN = 2
                    187:       LDWORK = N
                    188:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    189:          IWS = MAX( LDWORK*NB, 1 )
                    190:          IF( LWORK.LT.IWS ) THEN
                    191:             NB = LWORK / LDWORK
                    192:             NBMIN = MAX( 2, ILAENV( 2, 'DGETRI', ' ', N, -1, -1, -1 ) )
                    193:          END IF
                    194:       ELSE
                    195:          IWS = N
                    196:       END IF
                    197: *
                    198: *     Solve the equation inv(A)*L = inv(U) for inv(A).
                    199: *
                    200:       IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
                    201: *
                    202: *        Use unblocked code.
                    203: *
                    204:          DO 20 J = N, 1, -1
                    205: *
                    206: *           Copy current column of L to WORK and replace with zeros.
                    207: *
                    208:             DO 10 I = J + 1, N
                    209:                WORK( I ) = A( I, J )
                    210:                A( I, J ) = ZERO
                    211:    10       CONTINUE
                    212: *
                    213: *           Compute current column of inv(A).
                    214: *
                    215:             IF( J.LT.N )
                    216:      $         CALL DGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
                    217:      $                     LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
                    218:    20    CONTINUE
                    219:       ELSE
                    220: *
                    221: *        Use blocked code.
                    222: *
                    223:          NN = ( ( N-1 ) / NB )*NB + 1
                    224:          DO 50 J = NN, 1, -NB
                    225:             JB = MIN( NB, N-J+1 )
                    226: *
                    227: *           Copy current block column of L to WORK and replace with
                    228: *           zeros.
                    229: *
                    230:             DO 40 JJ = J, J + JB - 1
                    231:                DO 30 I = JJ + 1, N
                    232:                   WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
                    233:                   A( I, JJ ) = ZERO
                    234:    30          CONTINUE
                    235:    40       CONTINUE
                    236: *
                    237: *           Compute current block column of inv(A).
                    238: *
                    239:             IF( J+JB.LE.N )
                    240:      $         CALL DGEMM( 'No transpose', 'No transpose', N, JB,
                    241:      $                     N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
                    242:      $                     WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
                    243:             CALL DTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
                    244:      $                  ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
                    245:    50    CONTINUE
                    246:       END IF
                    247: *
                    248: *     Apply column interchanges.
                    249: *
                    250:       DO 60 J = N - 1, 1, -1
                    251:          JP = IPIV( J )
                    252:          IF( JP.NE.J )
                    253:      $      CALL DSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
                    254:    60 CONTINUE
                    255: *
                    256:       WORK( 1 ) = IWS
                    257:       RETURN
                    258: *
                    259: *     End of DGETRI
                    260: *
                    261:       END

CVSweb interface <joel.bertrand@systella.fr>