File:  [local] / rpl / lapack / lapack / dgesvxx.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:50 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DGESVXX computes the solution to system of linear equations A * X = B for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGESVXX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvxx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvxx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvxx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGESVXX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
   22: *                           EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW,
   23: *                           BERR, N_ERR_BNDS, ERR_BNDS_NORM,
   24: *                           ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK,
   25: *                           INFO )
   26: *
   27: *       .. Scalar Arguments ..
   28: *       CHARACTER          EQUED, FACT, TRANS
   29: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   30: *      $                   N_ERR_BNDS
   31: *       DOUBLE PRECISION   RCOND, RPVGRW
   32: *       ..
   33: *       .. Array Arguments ..
   34: *       INTEGER            IPIV( * ), IWORK( * )
   35: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   36: *      $                   X( LDX , * ),WORK( * )
   37: *       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
   38: *      $                   ERR_BNDS_NORM( NRHS, * ),
   39: *      $                   ERR_BNDS_COMP( NRHS, * )
   40: *       ..
   41: *
   42: *
   43: *> \par Purpose:
   44: *  =============
   45: *>
   46: *> \verbatim
   47: *>
   48: *>    DGESVXX uses the LU factorization to compute the solution to a
   49: *>    double precision system of linear equations  A * X = B,  where A is an
   50: *>    N-by-N matrix and X and B are N-by-NRHS matrices.
   51: *>
   52: *>    If requested, both normwise and maximum componentwise error bounds
   53: *>    are returned. DGESVXX will return a solution with a tiny
   54: *>    guaranteed error (O(eps) where eps is the working machine
   55: *>    precision) unless the matrix is very ill-conditioned, in which
   56: *>    case a warning is returned. Relevant condition numbers also are
   57: *>    calculated and returned.
   58: *>
   59: *>    DGESVXX accepts user-provided factorizations and equilibration
   60: *>    factors; see the definitions of the FACT and EQUED options.
   61: *>    Solving with refinement and using a factorization from a previous
   62: *>    DGESVXX call will also produce a solution with either O(eps)
   63: *>    errors or warnings, but we cannot make that claim for general
   64: *>    user-provided factorizations and equilibration factors if they
   65: *>    differ from what DGESVXX would itself produce.
   66: *> \endverbatim
   67: *
   68: *> \par Description:
   69: *  =================
   70: *>
   71: *> \verbatim
   72: *>
   73: *>    The following steps are performed:
   74: *>
   75: *>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
   76: *>    the system:
   77: *>
   78: *>      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
   79: *>      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
   80: *>      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
   81: *>
   82: *>    Whether or not the system will be equilibrated depends on the
   83: *>    scaling of the matrix A, but if equilibration is used, A is
   84: *>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
   85: *>    or diag(C)*B (if TRANS = 'T' or 'C').
   86: *>
   87: *>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
   88: *>    the matrix A (after equilibration if FACT = 'E') as
   89: *>
   90: *>      A = P * L * U,
   91: *>
   92: *>    where P is a permutation matrix, L is a unit lower triangular
   93: *>    matrix, and U is upper triangular.
   94: *>
   95: *>    3. If some U(i,i)=0, so that U is exactly singular, then the
   96: *>    routine returns with INFO = i. Otherwise, the factored form of A
   97: *>    is used to estimate the condition number of the matrix A (see
   98: *>    argument RCOND). If the reciprocal of the condition number is less
   99: *>    than machine precision, the routine still goes on to solve for X
  100: *>    and compute error bounds as described below.
  101: *>
  102: *>    4. The system of equations is solved for X using the factored form
  103: *>    of A.
  104: *>
  105: *>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
  106: *>    the routine will use iterative refinement to try to get a small
  107: *>    error and error bounds.  Refinement calculates the residual to at
  108: *>    least twice the working precision.
  109: *>
  110: *>    6. If equilibration was used, the matrix X is premultiplied by
  111: *>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
  112: *>    that it solves the original system before equilibration.
  113: *> \endverbatim
  114: *
  115: *  Arguments:
  116: *  ==========
  117: *
  118: *> \verbatim
  119: *>     Some optional parameters are bundled in the PARAMS array.  These
  120: *>     settings determine how refinement is performed, but often the
  121: *>     defaults are acceptable.  If the defaults are acceptable, users
  122: *>     can pass NPARAMS = 0 which prevents the source code from accessing
  123: *>     the PARAMS argument.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] FACT
  127: *> \verbatim
  128: *>          FACT is CHARACTER*1
  129: *>     Specifies whether or not the factored form of the matrix A is
  130: *>     supplied on entry, and if not, whether the matrix A should be
  131: *>     equilibrated before it is factored.
  132: *>       = 'F':  On entry, AF and IPIV contain the factored form of A.
  133: *>               If EQUED is not 'N', the matrix A has been
  134: *>               equilibrated with scaling factors given by R and C.
  135: *>               A, AF, and IPIV are not modified.
  136: *>       = 'N':  The matrix A will be copied to AF and factored.
  137: *>       = 'E':  The matrix A will be equilibrated if necessary, then
  138: *>               copied to AF and factored.
  139: *> \endverbatim
  140: *>
  141: *> \param[in] TRANS
  142: *> \verbatim
  143: *>          TRANS is CHARACTER*1
  144: *>     Specifies the form of the system of equations:
  145: *>       = 'N':  A * X = B     (No transpose)
  146: *>       = 'T':  A**T * X = B  (Transpose)
  147: *>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
  148: *> \endverbatim
  149: *>
  150: *> \param[in] N
  151: *> \verbatim
  152: *>          N is INTEGER
  153: *>     The number of linear equations, i.e., the order of the
  154: *>     matrix A.  N >= 0.
  155: *> \endverbatim
  156: *>
  157: *> \param[in] NRHS
  158: *> \verbatim
  159: *>          NRHS is INTEGER
  160: *>     The number of right hand sides, i.e., the number of columns
  161: *>     of the matrices B and X.  NRHS >= 0.
  162: *> \endverbatim
  163: *>
  164: *> \param[in,out] A
  165: *> \verbatim
  166: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  167: *>     On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
  168: *>     not 'N', then A must have been equilibrated by the scaling
  169: *>     factors in R and/or C.  A is not modified if FACT = 'F' or
  170: *>     'N', or if FACT = 'E' and EQUED = 'N' on exit.
  171: *>
  172: *>     On exit, if EQUED .ne. 'N', A is scaled as follows:
  173: *>     EQUED = 'R':  A := diag(R) * A
  174: *>     EQUED = 'C':  A := A * diag(C)
  175: *>     EQUED = 'B':  A := diag(R) * A * diag(C).
  176: *> \endverbatim
  177: *>
  178: *> \param[in] LDA
  179: *> \verbatim
  180: *>          LDA is INTEGER
  181: *>     The leading dimension of the array A.  LDA >= max(1,N).
  182: *> \endverbatim
  183: *>
  184: *> \param[in,out] AF
  185: *> \verbatim
  186: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  187: *>     If FACT = 'F', then AF is an input argument and on entry
  188: *>     contains the factors L and U from the factorization
  189: *>     A = P*L*U as computed by DGETRF.  If EQUED .ne. 'N', then
  190: *>     AF is the factored form of the equilibrated matrix A.
  191: *>
  192: *>     If FACT = 'N', then AF is an output argument and on exit
  193: *>     returns the factors L and U from the factorization A = P*L*U
  194: *>     of the original matrix A.
  195: *>
  196: *>     If FACT = 'E', then AF is an output argument and on exit
  197: *>     returns the factors L and U from the factorization A = P*L*U
  198: *>     of the equilibrated matrix A (see the description of A for
  199: *>     the form of the equilibrated matrix).
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDAF
  203: *> \verbatim
  204: *>          LDAF is INTEGER
  205: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  206: *> \endverbatim
  207: *>
  208: *> \param[in,out] IPIV
  209: *> \verbatim
  210: *>          IPIV is INTEGER array, dimension (N)
  211: *>     If FACT = 'F', then IPIV is an input argument and on entry
  212: *>     contains the pivot indices from the factorization A = P*L*U
  213: *>     as computed by DGETRF; row i of the matrix was interchanged
  214: *>     with row IPIV(i).
  215: *>
  216: *>     If FACT = 'N', then IPIV is an output argument and on exit
  217: *>     contains the pivot indices from the factorization A = P*L*U
  218: *>     of the original matrix A.
  219: *>
  220: *>     If FACT = 'E', then IPIV is an output argument and on exit
  221: *>     contains the pivot indices from the factorization A = P*L*U
  222: *>     of the equilibrated matrix A.
  223: *> \endverbatim
  224: *>
  225: *> \param[in,out] EQUED
  226: *> \verbatim
  227: *>          EQUED is CHARACTER*1
  228: *>     Specifies the form of equilibration that was done.
  229: *>       = 'N':  No equilibration (always true if FACT = 'N').
  230: *>       = 'R':  Row equilibration, i.e., A has been premultiplied by
  231: *>               diag(R).
  232: *>       = 'C':  Column equilibration, i.e., A has been postmultiplied
  233: *>               by diag(C).
  234: *>       = 'B':  Both row and column equilibration, i.e., A has been
  235: *>               replaced by diag(R) * A * diag(C).
  236: *>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
  237: *>     output argument.
  238: *> \endverbatim
  239: *>
  240: *> \param[in,out] R
  241: *> \verbatim
  242: *>          R is DOUBLE PRECISION array, dimension (N)
  243: *>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
  244: *>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  245: *>     is not accessed.  R is an input argument if FACT = 'F';
  246: *>     otherwise, R is an output argument.  If FACT = 'F' and
  247: *>     EQUED = 'R' or 'B', each element of R must be positive.
  248: *>     If R is output, each element of R is a power of the radix.
  249: *>     If R is input, each element of R should be a power of the radix
  250: *>     to ensure a reliable solution and error estimates. Scaling by
  251: *>     powers of the radix does not cause rounding errors unless the
  252: *>     result underflows or overflows. Rounding errors during scaling
  253: *>     lead to refining with a matrix that is not equivalent to the
  254: *>     input matrix, producing error estimates that may not be
  255: *>     reliable.
  256: *> \endverbatim
  257: *>
  258: *> \param[in,out] C
  259: *> \verbatim
  260: *>          C is DOUBLE PRECISION array, dimension (N)
  261: *>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
  262: *>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  263: *>     is not accessed.  C is an input argument if FACT = 'F';
  264: *>     otherwise, C is an output argument.  If FACT = 'F' and
  265: *>     EQUED = 'C' or 'B', each element of C must be positive.
  266: *>     If C is output, each element of C is a power of the radix.
  267: *>     If C is input, each element of C should be a power of the radix
  268: *>     to ensure a reliable solution and error estimates. Scaling by
  269: *>     powers of the radix does not cause rounding errors unless the
  270: *>     result underflows or overflows. Rounding errors during scaling
  271: *>     lead to refining with a matrix that is not equivalent to the
  272: *>     input matrix, producing error estimates that may not be
  273: *>     reliable.
  274: *> \endverbatim
  275: *>
  276: *> \param[in,out] B
  277: *> \verbatim
  278: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  279: *>     On entry, the N-by-NRHS right hand side matrix B.
  280: *>     On exit,
  281: *>     if EQUED = 'N', B is not modified;
  282: *>     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  283: *>        diag(R)*B;
  284: *>     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  285: *>        overwritten by diag(C)*B.
  286: *> \endverbatim
  287: *>
  288: *> \param[in] LDB
  289: *> \verbatim
  290: *>          LDB is INTEGER
  291: *>     The leading dimension of the array B.  LDB >= max(1,N).
  292: *> \endverbatim
  293: *>
  294: *> \param[out] X
  295: *> \verbatim
  296: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  297: *>     If INFO = 0, the N-by-NRHS solution matrix X to the original
  298: *>     system of equations.  Note that A and B are modified on exit
  299: *>     if EQUED .ne. 'N', and the solution to the equilibrated system is
  300: *>     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
  301: *>     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
  302: *> \endverbatim
  303: *>
  304: *> \param[in] LDX
  305: *> \verbatim
  306: *>          LDX is INTEGER
  307: *>     The leading dimension of the array X.  LDX >= max(1,N).
  308: *> \endverbatim
  309: *>
  310: *> \param[out] RCOND
  311: *> \verbatim
  312: *>          RCOND is DOUBLE PRECISION
  313: *>     Reciprocal scaled condition number.  This is an estimate of the
  314: *>     reciprocal Skeel condition number of the matrix A after
  315: *>     equilibration (if done).  If this is less than the machine
  316: *>     precision (in particular, if it is zero), the matrix is singular
  317: *>     to working precision.  Note that the error may still be small even
  318: *>     if this number is very small and the matrix appears ill-
  319: *>     conditioned.
  320: *> \endverbatim
  321: *>
  322: *> \param[out] RPVGRW
  323: *> \verbatim
  324: *>          RPVGRW is DOUBLE PRECISION
  325: *>     Reciprocal pivot growth.  On exit, this contains the reciprocal
  326: *>     pivot growth factor norm(A)/norm(U). The "max absolute element"
  327: *>     norm is used.  If this is much less than 1, then the stability of
  328: *>     the LU factorization of the (equilibrated) matrix A could be poor.
  329: *>     This also means that the solution X, estimated condition numbers,
  330: *>     and error bounds could be unreliable. If factorization fails with
  331: *>     0<INFO<=N, then this contains the reciprocal pivot growth factor
  332: *>     for the leading INFO columns of A.  In DGESVX, this quantity is
  333: *>     returned in WORK(1).
  334: *> \endverbatim
  335: *>
  336: *> \param[out] BERR
  337: *> \verbatim
  338: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  339: *>     Componentwise relative backward error.  This is the
  340: *>     componentwise relative backward error of each solution vector X(j)
  341: *>     (i.e., the smallest relative change in any element of A or B that
  342: *>     makes X(j) an exact solution).
  343: *> \endverbatim
  344: *>
  345: *> \param[in] N_ERR_BNDS
  346: *> \verbatim
  347: *>          N_ERR_BNDS is INTEGER
  348: *>     Number of error bounds to return for each right hand side
  349: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  350: *>     ERR_BNDS_COMP below.
  351: *> \endverbatim
  352: *>
  353: *> \param[out] ERR_BNDS_NORM
  354: *> \verbatim
  355: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  356: *>     For each right-hand side, this array contains information about
  357: *>     various error bounds and condition numbers corresponding to the
  358: *>     normwise relative error, which is defined as follows:
  359: *>
  360: *>     Normwise relative error in the ith solution vector:
  361: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  362: *>            ------------------------------
  363: *>                  max_j abs(X(j,i))
  364: *>
  365: *>     The array is indexed by the type of error information as described
  366: *>     below. There currently are up to three pieces of information
  367: *>     returned.
  368: *>
  369: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  370: *>     right-hand side.
  371: *>
  372: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  373: *>     three fields:
  374: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  375: *>              reciprocal condition number is less than the threshold
  376: *>              sqrt(n) * dlamch('Epsilon').
  377: *>
  378: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  379: *>              almost certainly within a factor of 10 of the true error
  380: *>              so long as the next entry is greater than the threshold
  381: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  382: *>              be trusted if the previous boolean is true.
  383: *>
  384: *>     err = 3  Reciprocal condition number: Estimated normwise
  385: *>              reciprocal condition number.  Compared with the threshold
  386: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  387: *>              estimate is "guaranteed". These reciprocal condition
  388: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  389: *>              appropriately scaled matrix Z.
  390: *>              Let Z = S*A, where S scales each row by a power of the
  391: *>              radix so all absolute row sums of Z are approximately 1.
  392: *>
  393: *>     See Lapack Working Note 165 for further details and extra
  394: *>     cautions.
  395: *> \endverbatim
  396: *>
  397: *> \param[out] ERR_BNDS_COMP
  398: *> \verbatim
  399: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  400: *>     For each right-hand side, this array contains information about
  401: *>     various error bounds and condition numbers corresponding to the
  402: *>     componentwise relative error, which is defined as follows:
  403: *>
  404: *>     Componentwise relative error in the ith solution vector:
  405: *>                    abs(XTRUE(j,i) - X(j,i))
  406: *>             max_j ----------------------
  407: *>                         abs(X(j,i))
  408: *>
  409: *>     The array is indexed by the right-hand side i (on which the
  410: *>     componentwise relative error depends), and the type of error
  411: *>     information as described below. There currently are up to three
  412: *>     pieces of information returned for each right-hand side. If
  413: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  414: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  415: *>     the first (:,N_ERR_BNDS) entries are returned.
  416: *>
  417: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  418: *>     right-hand side.
  419: *>
  420: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  421: *>     three fields:
  422: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  423: *>              reciprocal condition number is less than the threshold
  424: *>              sqrt(n) * dlamch('Epsilon').
  425: *>
  426: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  427: *>              almost certainly within a factor of 10 of the true error
  428: *>              so long as the next entry is greater than the threshold
  429: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  430: *>              be trusted if the previous boolean is true.
  431: *>
  432: *>     err = 3  Reciprocal condition number: Estimated componentwise
  433: *>              reciprocal condition number.  Compared with the threshold
  434: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  435: *>              estimate is "guaranteed". These reciprocal condition
  436: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  437: *>              appropriately scaled matrix Z.
  438: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  439: *>              current right-hand side and S scales each row of
  440: *>              A*diag(x) by a power of the radix so all absolute row
  441: *>              sums of Z are approximately 1.
  442: *>
  443: *>     See Lapack Working Note 165 for further details and extra
  444: *>     cautions.
  445: *> \endverbatim
  446: *>
  447: *> \param[in] NPARAMS
  448: *> \verbatim
  449: *>          NPARAMS is INTEGER
  450: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
  451: *>     PARAMS array is never referenced and default values are used.
  452: *> \endverbatim
  453: *>
  454: *> \param[in,out] PARAMS
  455: *> \verbatim
  456: *>          PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
  457: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
  458: *>     that entry will be filled with default value used for that
  459: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  460: *>     are used for higher-numbered parameters.
  461: *>
  462: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  463: *>            refinement or not.
  464: *>         Default: 1.0D+0
  465: *>            = 0.0:  No refinement is performed, and no error bounds are
  466: *>                    computed.
  467: *>            = 1.0:  Use the extra-precise refinement algorithm.
  468: *>              (other values are reserved for future use)
  469: *>
  470: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  471: *>            computations allowed for refinement.
  472: *>         Default: 10
  473: *>         Aggressive: Set to 100 to permit convergence using approximate
  474: *>                     factorizations or factorizations other than LU. If
  475: *>                     the factorization uses a technique other than
  476: *>                     Gaussian elimination, the guarantees in
  477: *>                     err_bnds_norm and err_bnds_comp may no longer be
  478: *>                     trustworthy.
  479: *>
  480: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  481: *>            will attempt to find a solution with small componentwise
  482: *>            relative error in the double-precision algorithm.  Positive
  483: *>            is true, 0.0 is false.
  484: *>         Default: 1.0 (attempt componentwise convergence)
  485: *> \endverbatim
  486: *>
  487: *> \param[out] WORK
  488: *> \verbatim
  489: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
  490: *> \endverbatim
  491: *>
  492: *> \param[out] IWORK
  493: *> \verbatim
  494: *>          IWORK is INTEGER array, dimension (N)
  495: *> \endverbatim
  496: *>
  497: *> \param[out] INFO
  498: *> \verbatim
  499: *>          INFO is INTEGER
  500: *>       = 0:  Successful exit. The solution to every right-hand side is
  501: *>         guaranteed.
  502: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  503: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  504: *>         has been completed, but the factor U is exactly singular, so
  505: *>         the solution and error bounds could not be computed. RCOND = 0
  506: *>         is returned.
  507: *>       = N+J: The solution corresponding to the Jth right-hand side is
  508: *>         not guaranteed. The solutions corresponding to other right-
  509: *>         hand sides K with K > J may not be guaranteed as well, but
  510: *>         only the first such right-hand side is reported. If a small
  511: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  512: *>         the Jth right-hand side is the first with a normwise error
  513: *>         bound that is not guaranteed (the smallest J such
  514: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  515: *>         the Jth right-hand side is the first with either a normwise or
  516: *>         componentwise error bound that is not guaranteed (the smallest
  517: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  518: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  519: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  520: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  521: *>         ERR_BNDS_COMP.
  522: *> \endverbatim
  523: *
  524: *  Authors:
  525: *  ========
  526: *
  527: *> \author Univ. of Tennessee
  528: *> \author Univ. of California Berkeley
  529: *> \author Univ. of Colorado Denver
  530: *> \author NAG Ltd.
  531: *
  532: *> \ingroup doubleGEsolve
  533: *
  534: *  =====================================================================
  535:       SUBROUTINE DGESVXX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
  536:      $                    EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW,
  537:      $                    BERR, N_ERR_BNDS, ERR_BNDS_NORM,
  538:      $                    ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK,
  539:      $                    INFO )
  540: *
  541: *  -- LAPACK driver routine --
  542: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  543: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  544: *
  545: *     .. Scalar Arguments ..
  546:       CHARACTER          EQUED, FACT, TRANS
  547:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  548:      $                   N_ERR_BNDS
  549:       DOUBLE PRECISION   RCOND, RPVGRW
  550: *     ..
  551: *     .. Array Arguments ..
  552:       INTEGER            IPIV( * ), IWORK( * )
  553:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  554:      $                   X( LDX , * ),WORK( * )
  555:       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
  556:      $                   ERR_BNDS_NORM( NRHS, * ),
  557:      $                   ERR_BNDS_COMP( NRHS, * )
  558: *     ..
  559: *
  560: *  =====================================================================
  561: *
  562: *     .. Parameters ..
  563:       DOUBLE PRECISION   ZERO, ONE
  564:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  565:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  566:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  567:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  568:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  569:      $                   BERR_I = 3 )
  570:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  571:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  572:      $                   PIV_GROWTH_I = 9 )
  573: *     ..
  574: *     .. Local Scalars ..
  575:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  576:       INTEGER            INFEQU, J
  577:       DOUBLE PRECISION   AMAX, BIGNUM, COLCND, RCMAX, RCMIN, ROWCND,
  578:      $                   SMLNUM
  579: *     ..
  580: *     .. External Functions ..
  581:       EXTERNAL           LSAME, DLAMCH, DLA_GERPVGRW
  582:       LOGICAL            LSAME
  583:       DOUBLE PRECISION   DLAMCH, DLA_GERPVGRW
  584: *     ..
  585: *     .. External Subroutines ..
  586:       EXTERNAL           DGEEQUB, DGETRF, DGETRS, DLACPY, DLAQGE,
  587:      $                   XERBLA, DLASCL2, DGERFSX
  588: *     ..
  589: *     .. Intrinsic Functions ..
  590:       INTRINSIC          MAX, MIN
  591: *     ..
  592: *     .. Executable Statements ..
  593: *
  594:       INFO = 0
  595:       NOFACT = LSAME( FACT, 'N' )
  596:       EQUIL = LSAME( FACT, 'E' )
  597:       NOTRAN = LSAME( TRANS, 'N' )
  598:       SMLNUM = DLAMCH( 'Safe minimum' )
  599:       BIGNUM = ONE / SMLNUM
  600:       IF( NOFACT .OR. EQUIL ) THEN
  601:          EQUED = 'N'
  602:          ROWEQU = .FALSE.
  603:          COLEQU = .FALSE.
  604:       ELSE
  605:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  606:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  607:       END IF
  608: *
  609: *     Default is failure.  If an input parameter is wrong or
  610: *     factorization fails, make everything look horrible.  Only the
  611: *     pivot growth is set here, the rest is initialized in DGERFSX.
  612: *
  613:       RPVGRW = ZERO
  614: *
  615: *     Test the input parameters.  PARAMS is not tested until DGERFSX.
  616: *
  617:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
  618:      $     LSAME( FACT, 'F' ) ) THEN
  619:          INFO = -1
  620:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  621:      $        LSAME( TRANS, 'C' ) ) THEN
  622:          INFO = -2
  623:       ELSE IF( N.LT.0 ) THEN
  624:          INFO = -3
  625:       ELSE IF( NRHS.LT.0 ) THEN
  626:          INFO = -4
  627:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  628:          INFO = -6
  629:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  630:          INFO = -8
  631:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  632:      $        ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  633:          INFO = -10
  634:       ELSE
  635:          IF( ROWEQU ) THEN
  636:             RCMIN = BIGNUM
  637:             RCMAX = ZERO
  638:             DO 10 J = 1, N
  639:                RCMIN = MIN( RCMIN, R( J ) )
  640:                RCMAX = MAX( RCMAX, R( J ) )
  641:  10         CONTINUE
  642:             IF( RCMIN.LE.ZERO ) THEN
  643:                INFO = -11
  644:             ELSE IF( N.GT.0 ) THEN
  645:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  646:             ELSE
  647:                ROWCND = ONE
  648:             END IF
  649:          END IF
  650:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
  651:             RCMIN = BIGNUM
  652:             RCMAX = ZERO
  653:             DO 20 J = 1, N
  654:                RCMIN = MIN( RCMIN, C( J ) )
  655:                RCMAX = MAX( RCMAX, C( J ) )
  656:  20         CONTINUE
  657:             IF( RCMIN.LE.ZERO ) THEN
  658:                INFO = -12
  659:             ELSE IF( N.GT.0 ) THEN
  660:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  661:             ELSE
  662:                COLCND = ONE
  663:             END IF
  664:          END IF
  665:          IF( INFO.EQ.0 ) THEN
  666:             IF( LDB.LT.MAX( 1, N ) ) THEN
  667:                INFO = -14
  668:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  669:                INFO = -16
  670:             END IF
  671:          END IF
  672:       END IF
  673: *
  674:       IF( INFO.NE.0 ) THEN
  675:          CALL XERBLA( 'DGESVXX', -INFO )
  676:          RETURN
  677:       END IF
  678: *
  679:       IF( EQUIL ) THEN
  680: *
  681: *     Compute row and column scalings to equilibrate the matrix A.
  682: *
  683:          CALL DGEEQUB( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
  684:      $        INFEQU )
  685:          IF( INFEQU.EQ.0 ) THEN
  686: *
  687: *     Equilibrate the matrix.
  688: *
  689:             CALL DLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
  690:      $           EQUED )
  691:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  692:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  693:          END IF
  694: *
  695: *     If the scaling factors are not applied, set them to 1.0.
  696: *
  697:          IF ( .NOT.ROWEQU ) THEN
  698:             DO J = 1, N
  699:                R( J ) = 1.0D+0
  700:             END DO
  701:          END IF
  702:          IF ( .NOT.COLEQU ) THEN
  703:             DO J = 1, N
  704:                C( J ) = 1.0D+0
  705:             END DO
  706:          END IF
  707:       END IF
  708: *
  709: *     Scale the right-hand side.
  710: *
  711:       IF( NOTRAN ) THEN
  712:          IF( ROWEQU ) CALL DLASCL2( N, NRHS, R, B, LDB )
  713:       ELSE
  714:          IF( COLEQU ) CALL DLASCL2( N, NRHS, C, B, LDB )
  715:       END IF
  716: *
  717:       IF( NOFACT .OR. EQUIL ) THEN
  718: *
  719: *        Compute the LU factorization of A.
  720: *
  721:          CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF )
  722:          CALL DGETRF( N, N, AF, LDAF, IPIV, INFO )
  723: *
  724: *        Return if INFO is non-zero.
  725: *
  726:          IF( INFO.GT.0 ) THEN
  727: *
  728: *           Pivot in column INFO is exactly 0
  729: *           Compute the reciprocal pivot growth factor of the
  730: *           leading rank-deficient INFO columns of A.
  731: *
  732:             RPVGRW = DLA_GERPVGRW( N, INFO, A, LDA, AF, LDAF )
  733:             RETURN
  734:          END IF
  735:       END IF
  736: *
  737: *     Compute the reciprocal pivot growth factor RPVGRW.
  738: *
  739:       RPVGRW = DLA_GERPVGRW( N, N, A, LDA, AF, LDAF )
  740: *
  741: *     Compute the solution matrix X.
  742: *
  743:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  744:       CALL DGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  745: *
  746: *     Use iterative refinement to improve the computed solution and
  747: *     compute error bounds and backward error estimates for it.
  748: *
  749:       CALL DGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF,
  750:      $     IPIV, R, C, B, LDB, X, LDX, RCOND, BERR,
  751:      $     N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  752:      $     WORK, IWORK, INFO )
  753: *
  754: *     Scale solutions.
  755: *
  756:       IF ( COLEQU .AND. NOTRAN ) THEN
  757:          CALL DLASCL2 ( N, NRHS, C, X, LDX )
  758:       ELSE IF ( ROWEQU .AND. .NOT.NOTRAN ) THEN
  759:          CALL DLASCL2 ( N, NRHS, R, X, LDX )
  760:       END IF
  761: *
  762:       RETURN
  763: *
  764: *     End of DGESVXX
  765: 
  766:       END

CVSweb interface <joel.bertrand@systella.fr>