File:  [local] / rpl / lapack / lapack / dgesvx.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:37 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
    2:      $                   EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
    3:      $                   WORK, IWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          EQUED, FACT, TRANS
   12:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   13:       DOUBLE PRECISION   RCOND
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IPIV( * ), IWORK( * )
   17:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   18:      $                   BERR( * ), C( * ), FERR( * ), R( * ),
   19:      $                   WORK( * ), X( LDX, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DGESVX uses the LU factorization to compute the solution to a real
   26: *  system of linear equations
   27: *     A * X = B,
   28: *  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
   29: *
   30: *  Error bounds on the solution and a condition estimate are also
   31: *  provided.
   32: *
   33: *  Description
   34: *  ===========
   35: *
   36: *  The following steps are performed:
   37: *
   38: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
   39: *     the system:
   40: *        TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
   41: *        TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
   42: *        TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
   43: *     Whether or not the system will be equilibrated depends on the
   44: *     scaling of the matrix A, but if equilibration is used, A is
   45: *     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
   46: *     or diag(C)*B (if TRANS = 'T' or 'C').
   47: *
   48: *  2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
   49: *     matrix A (after equilibration if FACT = 'E') as
   50: *        A = P * L * U,
   51: *     where P is a permutation matrix, L is a unit lower triangular
   52: *     matrix, and U is upper triangular.
   53: *
   54: *  3. If some U(i,i)=0, so that U is exactly singular, then the routine
   55: *     returns with INFO = i. Otherwise, the factored form of A is used
   56: *     to estimate the condition number of the matrix A.  If the
   57: *     reciprocal of the condition number is less than machine precision,
   58: *     INFO = N+1 is returned as a warning, but the routine still goes on
   59: *     to solve for X and compute error bounds as described below.
   60: *
   61: *  4. The system of equations is solved for X using the factored form
   62: *     of A.
   63: *
   64: *  5. Iterative refinement is applied to improve the computed solution
   65: *     matrix and calculate error bounds and backward error estimates
   66: *     for it.
   67: *
   68: *  6. If equilibration was used, the matrix X is premultiplied by
   69: *     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
   70: *     that it solves the original system before equilibration.
   71: *
   72: *  Arguments
   73: *  =========
   74: *
   75: *  FACT    (input) CHARACTER*1
   76: *          Specifies whether or not the factored form of the matrix A is
   77: *          supplied on entry, and if not, whether the matrix A should be
   78: *          equilibrated before it is factored.
   79: *          = 'F':  On entry, AF and IPIV contain the factored form of A.
   80: *                  If EQUED is not 'N', the matrix A has been
   81: *                  equilibrated with scaling factors given by R and C.
   82: *                  A, AF, and IPIV are not modified.
   83: *          = 'N':  The matrix A will be copied to AF and factored.
   84: *          = 'E':  The matrix A will be equilibrated if necessary, then
   85: *                  copied to AF and factored.
   86: *
   87: *  TRANS   (input) CHARACTER*1
   88: *          Specifies the form of the system of equations:
   89: *          = 'N':  A * X = B     (No transpose)
   90: *          = 'T':  A**T * X = B  (Transpose)
   91: *          = 'C':  A**H * X = B  (Transpose)
   92: *
   93: *  N       (input) INTEGER
   94: *          The number of linear equations, i.e., the order of the
   95: *          matrix A.  N >= 0.
   96: *
   97: *  NRHS    (input) INTEGER
   98: *          The number of right hand sides, i.e., the number of columns
   99: *          of the matrices B and X.  NRHS >= 0.
  100: *
  101: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
  102: *          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
  103: *          not 'N', then A must have been equilibrated by the scaling
  104: *          factors in R and/or C.  A is not modified if FACT = 'F' or
  105: *          'N', or if FACT = 'E' and EQUED = 'N' on exit.
  106: *
  107: *          On exit, if EQUED .ne. 'N', A is scaled as follows:
  108: *          EQUED = 'R':  A := diag(R) * A
  109: *          EQUED = 'C':  A := A * diag(C)
  110: *          EQUED = 'B':  A := diag(R) * A * diag(C).
  111: *
  112: *  LDA     (input) INTEGER
  113: *          The leading dimension of the array A.  LDA >= max(1,N).
  114: *
  115: *  AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
  116: *          If FACT = 'F', then AF is an input argument and on entry
  117: *          contains the factors L and U from the factorization
  118: *          A = P*L*U as computed by DGETRF.  If EQUED .ne. 'N', then
  119: *          AF is the factored form of the equilibrated matrix A.
  120: *
  121: *          If FACT = 'N', then AF is an output argument and on exit
  122: *          returns the factors L and U from the factorization A = P*L*U
  123: *          of the original matrix A.
  124: *
  125: *          If FACT = 'E', then AF is an output argument and on exit
  126: *          returns the factors L and U from the factorization A = P*L*U
  127: *          of the equilibrated matrix A (see the description of A for
  128: *          the form of the equilibrated matrix).
  129: *
  130: *  LDAF    (input) INTEGER
  131: *          The leading dimension of the array AF.  LDAF >= max(1,N).
  132: *
  133: *  IPIV    (input or output) INTEGER array, dimension (N)
  134: *          If FACT = 'F', then IPIV is an input argument and on entry
  135: *          contains the pivot indices from the factorization A = P*L*U
  136: *          as computed by DGETRF; row i of the matrix was interchanged
  137: *          with row IPIV(i).
  138: *
  139: *          If FACT = 'N', then IPIV is an output argument and on exit
  140: *          contains the pivot indices from the factorization A = P*L*U
  141: *          of the original matrix A.
  142: *
  143: *          If FACT = 'E', then IPIV is an output argument and on exit
  144: *          contains the pivot indices from the factorization A = P*L*U
  145: *          of the equilibrated matrix A.
  146: *
  147: *  EQUED   (input or output) CHARACTER*1
  148: *          Specifies the form of equilibration that was done.
  149: *          = 'N':  No equilibration (always true if FACT = 'N').
  150: *          = 'R':  Row equilibration, i.e., A has been premultiplied by
  151: *                  diag(R).
  152: *          = 'C':  Column equilibration, i.e., A has been postmultiplied
  153: *                  by diag(C).
  154: *          = 'B':  Both row and column equilibration, i.e., A has been
  155: *                  replaced by diag(R) * A * diag(C).
  156: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  157: *          output argument.
  158: *
  159: *  R       (input or output) DOUBLE PRECISION array, dimension (N)
  160: *          The row scale factors for A.  If EQUED = 'R' or 'B', A is
  161: *          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  162: *          is not accessed.  R is an input argument if FACT = 'F';
  163: *          otherwise, R is an output argument.  If FACT = 'F' and
  164: *          EQUED = 'R' or 'B', each element of R must be positive.
  165: *
  166: *  C       (input or output) DOUBLE PRECISION array, dimension (N)
  167: *          The column scale factors for A.  If EQUED = 'C' or 'B', A is
  168: *          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  169: *          is not accessed.  C is an input argument if FACT = 'F';
  170: *          otherwise, C is an output argument.  If FACT = 'F' and
  171: *          EQUED = 'C' or 'B', each element of C must be positive.
  172: *
  173: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
  174: *          On entry, the N-by-NRHS right hand side matrix B.
  175: *          On exit,
  176: *          if EQUED = 'N', B is not modified;
  177: *          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  178: *          diag(R)*B;
  179: *          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  180: *          overwritten by diag(C)*B.
  181: *
  182: *  LDB     (input) INTEGER
  183: *          The leading dimension of the array B.  LDB >= max(1,N).
  184: *
  185: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  186: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
  187: *          to the original system of equations.  Note that A and B are
  188: *          modified on exit if EQUED .ne. 'N', and the solution to the
  189: *          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
  190: *          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
  191: *          and EQUED = 'R' or 'B'.
  192: *
  193: *  LDX     (input) INTEGER
  194: *          The leading dimension of the array X.  LDX >= max(1,N).
  195: *
  196: *  RCOND   (output) DOUBLE PRECISION
  197: *          The estimate of the reciprocal condition number of the matrix
  198: *          A after equilibration (if done).  If RCOND is less than the
  199: *          machine precision (in particular, if RCOND = 0), the matrix
  200: *          is singular to working precision.  This condition is
  201: *          indicated by a return code of INFO > 0.
  202: *
  203: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  204: *          The estimated forward error bound for each solution vector
  205: *          X(j) (the j-th column of the solution matrix X).
  206: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  207: *          is an estimated upper bound for the magnitude of the largest
  208: *          element in (X(j) - XTRUE) divided by the magnitude of the
  209: *          largest element in X(j).  The estimate is as reliable as
  210: *          the estimate for RCOND, and is almost always a slight
  211: *          overestimate of the true error.
  212: *
  213: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  214: *          The componentwise relative backward error of each solution
  215: *          vector X(j) (i.e., the smallest relative change in
  216: *          any element of A or B that makes X(j) an exact solution).
  217: *
  218: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (4*N)
  219: *          On exit, WORK(1) contains the reciprocal pivot growth
  220: *          factor norm(A)/norm(U). The "max absolute element" norm is
  221: *          used. If WORK(1) is much less than 1, then the stability
  222: *          of the LU factorization of the (equilibrated) matrix A
  223: *          could be poor. This also means that the solution X, condition
  224: *          estimator RCOND, and forward error bound FERR could be
  225: *          unreliable. If factorization fails with 0<INFO<=N, then
  226: *          WORK(1) contains the reciprocal pivot growth factor for the
  227: *          leading INFO columns of A.
  228: *
  229: *  IWORK   (workspace) INTEGER array, dimension (N)
  230: *
  231: *  INFO    (output) INTEGER
  232: *          = 0:  successful exit
  233: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  234: *          > 0:  if INFO = i, and i is
  235: *                <= N:  U(i,i) is exactly zero.  The factorization has
  236: *                       been completed, but the factor U is exactly
  237: *                       singular, so the solution and error bounds
  238: *                       could not be computed. RCOND = 0 is returned.
  239: *                = N+1: U is nonsingular, but RCOND is less than machine
  240: *                       precision, meaning that the matrix is singular
  241: *                       to working precision.  Nevertheless, the
  242: *                       solution and error bounds are computed because
  243: *                       there are a number of situations where the
  244: *                       computed solution can be more accurate than the
  245: *                       value of RCOND would suggest.
  246: *
  247: *  =====================================================================
  248: *
  249: *     .. Parameters ..
  250:       DOUBLE PRECISION   ZERO, ONE
  251:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  252: *     ..
  253: *     .. Local Scalars ..
  254:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  255:       CHARACTER          NORM
  256:       INTEGER            I, INFEQU, J
  257:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
  258:      $                   ROWCND, RPVGRW, SMLNUM
  259: *     ..
  260: *     .. External Functions ..
  261:       LOGICAL            LSAME
  262:       DOUBLE PRECISION   DLAMCH, DLANGE, DLANTR
  263:       EXTERNAL           LSAME, DLAMCH, DLANGE, DLANTR
  264: *     ..
  265: *     .. External Subroutines ..
  266:       EXTERNAL           DGECON, DGEEQU, DGERFS, DGETRF, DGETRS, DLACPY,
  267:      $                   DLAQGE, XERBLA
  268: *     ..
  269: *     .. Intrinsic Functions ..
  270:       INTRINSIC          MAX, MIN
  271: *     ..
  272: *     .. Executable Statements ..
  273: *
  274:       INFO = 0
  275:       NOFACT = LSAME( FACT, 'N' )
  276:       EQUIL = LSAME( FACT, 'E' )
  277:       NOTRAN = LSAME( TRANS, 'N' )
  278:       IF( NOFACT .OR. EQUIL ) THEN
  279:          EQUED = 'N'
  280:          ROWEQU = .FALSE.
  281:          COLEQU = .FALSE.
  282:       ELSE
  283:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  284:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  285:          SMLNUM = DLAMCH( 'Safe minimum' )
  286:          BIGNUM = ONE / SMLNUM
  287:       END IF
  288: *
  289: *     Test the input parameters.
  290: *
  291:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  292:      $     THEN
  293:          INFO = -1
  294:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  295:      $         LSAME( TRANS, 'C' ) ) THEN
  296:          INFO = -2
  297:       ELSE IF( N.LT.0 ) THEN
  298:          INFO = -3
  299:       ELSE IF( NRHS.LT.0 ) THEN
  300:          INFO = -4
  301:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  302:          INFO = -6
  303:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  304:          INFO = -8
  305:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  306:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  307:          INFO = -10
  308:       ELSE
  309:          IF( ROWEQU ) THEN
  310:             RCMIN = BIGNUM
  311:             RCMAX = ZERO
  312:             DO 10 J = 1, N
  313:                RCMIN = MIN( RCMIN, R( J ) )
  314:                RCMAX = MAX( RCMAX, R( J ) )
  315:    10       CONTINUE
  316:             IF( RCMIN.LE.ZERO ) THEN
  317:                INFO = -11
  318:             ELSE IF( N.GT.0 ) THEN
  319:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  320:             ELSE
  321:                ROWCND = ONE
  322:             END IF
  323:          END IF
  324:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
  325:             RCMIN = BIGNUM
  326:             RCMAX = ZERO
  327:             DO 20 J = 1, N
  328:                RCMIN = MIN( RCMIN, C( J ) )
  329:                RCMAX = MAX( RCMAX, C( J ) )
  330:    20       CONTINUE
  331:             IF( RCMIN.LE.ZERO ) THEN
  332:                INFO = -12
  333:             ELSE IF( N.GT.0 ) THEN
  334:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  335:             ELSE
  336:                COLCND = ONE
  337:             END IF
  338:          END IF
  339:          IF( INFO.EQ.0 ) THEN
  340:             IF( LDB.LT.MAX( 1, N ) ) THEN
  341:                INFO = -14
  342:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  343:                INFO = -16
  344:             END IF
  345:          END IF
  346:       END IF
  347: *
  348:       IF( INFO.NE.0 ) THEN
  349:          CALL XERBLA( 'DGESVX', -INFO )
  350:          RETURN
  351:       END IF
  352: *
  353:       IF( EQUIL ) THEN
  354: *
  355: *        Compute row and column scalings to equilibrate the matrix A.
  356: *
  357:          CALL DGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
  358:          IF( INFEQU.EQ.0 ) THEN
  359: *
  360: *           Equilibrate the matrix.
  361: *
  362:             CALL DLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
  363:      $                   EQUED )
  364:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  365:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  366:          END IF
  367:       END IF
  368: *
  369: *     Scale the right hand side.
  370: *
  371:       IF( NOTRAN ) THEN
  372:          IF( ROWEQU ) THEN
  373:             DO 40 J = 1, NRHS
  374:                DO 30 I = 1, N
  375:                   B( I, J ) = R( I )*B( I, J )
  376:    30          CONTINUE
  377:    40       CONTINUE
  378:          END IF
  379:       ELSE IF( COLEQU ) THEN
  380:          DO 60 J = 1, NRHS
  381:             DO 50 I = 1, N
  382:                B( I, J ) = C( I )*B( I, J )
  383:    50       CONTINUE
  384:    60    CONTINUE
  385:       END IF
  386: *
  387:       IF( NOFACT .OR. EQUIL ) THEN
  388: *
  389: *        Compute the LU factorization of A.
  390: *
  391:          CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF )
  392:          CALL DGETRF( N, N, AF, LDAF, IPIV, INFO )
  393: *
  394: *        Return if INFO is non-zero.
  395: *
  396:          IF( INFO.GT.0 ) THEN
  397: *
  398: *           Compute the reciprocal pivot growth factor of the
  399: *           leading rank-deficient INFO columns of A.
  400: *
  401:             RPVGRW = DLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
  402:      $               WORK )
  403:             IF( RPVGRW.EQ.ZERO ) THEN
  404:                RPVGRW = ONE
  405:             ELSE
  406:                RPVGRW = DLANGE( 'M', N, INFO, A, LDA, WORK ) / RPVGRW
  407:             END IF
  408:             WORK( 1 ) = RPVGRW
  409:             RCOND = ZERO
  410:             RETURN
  411:          END IF
  412:       END IF
  413: *
  414: *     Compute the norm of the matrix A and the
  415: *     reciprocal pivot growth factor RPVGRW.
  416: *
  417:       IF( NOTRAN ) THEN
  418:          NORM = '1'
  419:       ELSE
  420:          NORM = 'I'
  421:       END IF
  422:       ANORM = DLANGE( NORM, N, N, A, LDA, WORK )
  423:       RPVGRW = DLANTR( 'M', 'U', 'N', N, N, AF, LDAF, WORK )
  424:       IF( RPVGRW.EQ.ZERO ) THEN
  425:          RPVGRW = ONE
  426:       ELSE
  427:          RPVGRW = DLANGE( 'M', N, N, A, LDA, WORK ) / RPVGRW
  428:       END IF
  429: *
  430: *     Compute the reciprocal of the condition number of A.
  431: *
  432:       CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
  433: *
  434: *     Compute the solution matrix X.
  435: *
  436:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  437:       CALL DGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  438: *
  439: *     Use iterative refinement to improve the computed solution and
  440: *     compute error bounds and backward error estimates for it.
  441: *
  442:       CALL DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
  443:      $             LDX, FERR, BERR, WORK, IWORK, INFO )
  444: *
  445: *     Transform the solution matrix X to a solution of the original
  446: *     system.
  447: *
  448:       IF( NOTRAN ) THEN
  449:          IF( COLEQU ) THEN
  450:             DO 80 J = 1, NRHS
  451:                DO 70 I = 1, N
  452:                   X( I, J ) = C( I )*X( I, J )
  453:    70          CONTINUE
  454:    80       CONTINUE
  455:             DO 90 J = 1, NRHS
  456:                FERR( J ) = FERR( J ) / COLCND
  457:    90       CONTINUE
  458:          END IF
  459:       ELSE IF( ROWEQU ) THEN
  460:          DO 110 J = 1, NRHS
  461:             DO 100 I = 1, N
  462:                X( I, J ) = R( I )*X( I, J )
  463:   100       CONTINUE
  464:   110    CONTINUE
  465:          DO 120 J = 1, NRHS
  466:             FERR( J ) = FERR( J ) / ROWCND
  467:   120    CONTINUE
  468:       END IF
  469: *
  470:       WORK( 1 ) = RPVGRW
  471: *
  472: *     Set INFO = N+1 if the matrix is singular to working precision.
  473: *
  474:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  475:      $   INFO = N + 1
  476:       RETURN
  477: *
  478: *     End of DGESVX
  479: *
  480:       END

CVSweb interface <joel.bertrand@systella.fr>