Annotation of rpl/lapack/lapack/dgesvx.f, revision 1.10

1.8       bertrand    1: *> \brief <b> DGESVX computes the solution to system of linear equations A * X = B for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGESVX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
                     22: *                          EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
                     23: *                          WORK, IWORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          EQUED, FACT, TRANS
                     27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     28: *       DOUBLE PRECISION   RCOND
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IPIV( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     33: *      $                   BERR( * ), C( * ), FERR( * ), R( * ),
                     34: *      $                   WORK( * ), X( LDX, * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DGESVX uses the LU factorization to compute the solution to a real
                     44: *> system of linear equations
                     45: *>    A * X = B,
                     46: *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
                     47: *>
                     48: *> Error bounds on the solution and a condition estimate are also
                     49: *> provided.
                     50: *> \endverbatim
                     51: *
                     52: *> \par Description:
                     53: *  =================
                     54: *>
                     55: *> \verbatim
                     56: *>
                     57: *> The following steps are performed:
                     58: *>
                     59: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
                     60: *>    the system:
                     61: *>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
                     62: *>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
                     63: *>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
                     64: *>    Whether or not the system will be equilibrated depends on the
                     65: *>    scaling of the matrix A, but if equilibration is used, A is
                     66: *>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
                     67: *>    or diag(C)*B (if TRANS = 'T' or 'C').
                     68: *>
                     69: *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
                     70: *>    matrix A (after equilibration if FACT = 'E') as
                     71: *>       A = P * L * U,
                     72: *>    where P is a permutation matrix, L is a unit lower triangular
                     73: *>    matrix, and U is upper triangular.
                     74: *>
                     75: *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
                     76: *>    returns with INFO = i. Otherwise, the factored form of A is used
                     77: *>    to estimate the condition number of the matrix A.  If the
                     78: *>    reciprocal of the condition number is less than machine precision,
                     79: *>    INFO = N+1 is returned as a warning, but the routine still goes on
                     80: *>    to solve for X and compute error bounds as described below.
                     81: *>
                     82: *> 4. The system of equations is solved for X using the factored form
                     83: *>    of A.
                     84: *>
                     85: *> 5. Iterative refinement is applied to improve the computed solution
                     86: *>    matrix and calculate error bounds and backward error estimates
                     87: *>    for it.
                     88: *>
                     89: *> 6. If equilibration was used, the matrix X is premultiplied by
                     90: *>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
                     91: *>    that it solves the original system before equilibration.
                     92: *> \endverbatim
                     93: *
                     94: *  Arguments:
                     95: *  ==========
                     96: *
                     97: *> \param[in] FACT
                     98: *> \verbatim
                     99: *>          FACT is CHARACTER*1
                    100: *>          Specifies whether or not the factored form of the matrix A is
                    101: *>          supplied on entry, and if not, whether the matrix A should be
                    102: *>          equilibrated before it is factored.
                    103: *>          = 'F':  On entry, AF and IPIV contain the factored form of A.
                    104: *>                  If EQUED is not 'N', the matrix A has been
                    105: *>                  equilibrated with scaling factors given by R and C.
                    106: *>                  A, AF, and IPIV are not modified.
                    107: *>          = 'N':  The matrix A will be copied to AF and factored.
                    108: *>          = 'E':  The matrix A will be equilibrated if necessary, then
                    109: *>                  copied to AF and factored.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] TRANS
                    113: *> \verbatim
                    114: *>          TRANS is CHARACTER*1
                    115: *>          Specifies the form of the system of equations:
                    116: *>          = 'N':  A * X = B     (No transpose)
                    117: *>          = 'T':  A**T * X = B  (Transpose)
                    118: *>          = 'C':  A**H * X = B  (Transpose)
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] N
                    122: *> \verbatim
                    123: *>          N is INTEGER
                    124: *>          The number of linear equations, i.e., the order of the
                    125: *>          matrix A.  N >= 0.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] NRHS
                    129: *> \verbatim
                    130: *>          NRHS is INTEGER
                    131: *>          The number of right hand sides, i.e., the number of columns
                    132: *>          of the matrices B and X.  NRHS >= 0.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in,out] A
                    136: *> \verbatim
                    137: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    138: *>          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
                    139: *>          not 'N', then A must have been equilibrated by the scaling
                    140: *>          factors in R and/or C.  A is not modified if FACT = 'F' or
                    141: *>          'N', or if FACT = 'E' and EQUED = 'N' on exit.
                    142: *>
                    143: *>          On exit, if EQUED .ne. 'N', A is scaled as follows:
                    144: *>          EQUED = 'R':  A := diag(R) * A
                    145: *>          EQUED = 'C':  A := A * diag(C)
                    146: *>          EQUED = 'B':  A := diag(R) * A * diag(C).
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[in] LDA
                    150: *> \verbatim
                    151: *>          LDA is INTEGER
                    152: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[in,out] AF
                    156: *> \verbatim
1.10    ! bertrand  157: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
1.8       bertrand  158: *>          If FACT = 'F', then AF is an input argument and on entry
                    159: *>          contains the factors L and U from the factorization
                    160: *>          A = P*L*U as computed by DGETRF.  If EQUED .ne. 'N', then
                    161: *>          AF is the factored form of the equilibrated matrix A.
                    162: *>
                    163: *>          If FACT = 'N', then AF is an output argument and on exit
                    164: *>          returns the factors L and U from the factorization A = P*L*U
                    165: *>          of the original matrix A.
                    166: *>
                    167: *>          If FACT = 'E', then AF is an output argument and on exit
                    168: *>          returns the factors L and U from the factorization A = P*L*U
                    169: *>          of the equilibrated matrix A (see the description of A for
                    170: *>          the form of the equilibrated matrix).
                    171: *> \endverbatim
                    172: *>
                    173: *> \param[in] LDAF
                    174: *> \verbatim
                    175: *>          LDAF is INTEGER
                    176: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[in,out] IPIV
                    180: *> \verbatim
1.10    ! bertrand  181: *>          IPIV is INTEGER array, dimension (N)
1.8       bertrand  182: *>          If FACT = 'F', then IPIV is an input argument and on entry
                    183: *>          contains the pivot indices from the factorization A = P*L*U
                    184: *>          as computed by DGETRF; row i of the matrix was interchanged
                    185: *>          with row IPIV(i).
                    186: *>
                    187: *>          If FACT = 'N', then IPIV is an output argument and on exit
                    188: *>          contains the pivot indices from the factorization A = P*L*U
                    189: *>          of the original matrix A.
                    190: *>
                    191: *>          If FACT = 'E', then IPIV is an output argument and on exit
                    192: *>          contains the pivot indices from the factorization A = P*L*U
                    193: *>          of the equilibrated matrix A.
                    194: *> \endverbatim
                    195: *>
                    196: *> \param[in,out] EQUED
                    197: *> \verbatim
1.10    ! bertrand  198: *>          EQUED is CHARACTER*1
1.8       bertrand  199: *>          Specifies the form of equilibration that was done.
                    200: *>          = 'N':  No equilibration (always true if FACT = 'N').
                    201: *>          = 'R':  Row equilibration, i.e., A has been premultiplied by
                    202: *>                  diag(R).
                    203: *>          = 'C':  Column equilibration, i.e., A has been postmultiplied
                    204: *>                  by diag(C).
                    205: *>          = 'B':  Both row and column equilibration, i.e., A has been
                    206: *>                  replaced by diag(R) * A * diag(C).
                    207: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    208: *>          output argument.
                    209: *> \endverbatim
                    210: *>
                    211: *> \param[in,out] R
                    212: *> \verbatim
1.10    ! bertrand  213: *>          R is DOUBLE PRECISION array, dimension (N)
1.8       bertrand  214: *>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
                    215: *>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
                    216: *>          is not accessed.  R is an input argument if FACT = 'F';
                    217: *>          otherwise, R is an output argument.  If FACT = 'F' and
                    218: *>          EQUED = 'R' or 'B', each element of R must be positive.
                    219: *> \endverbatim
                    220: *>
                    221: *> \param[in,out] C
                    222: *> \verbatim
1.10    ! bertrand  223: *>          C is DOUBLE PRECISION array, dimension (N)
1.8       bertrand  224: *>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
                    225: *>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
                    226: *>          is not accessed.  C is an input argument if FACT = 'F';
                    227: *>          otherwise, C is an output argument.  If FACT = 'F' and
                    228: *>          EQUED = 'C' or 'B', each element of C must be positive.
                    229: *> \endverbatim
                    230: *>
                    231: *> \param[in,out] B
                    232: *> \verbatim
                    233: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    234: *>          On entry, the N-by-NRHS right hand side matrix B.
                    235: *>          On exit,
                    236: *>          if EQUED = 'N', B is not modified;
                    237: *>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
                    238: *>          diag(R)*B;
                    239: *>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
                    240: *>          overwritten by diag(C)*B.
                    241: *> \endverbatim
                    242: *>
                    243: *> \param[in] LDB
                    244: *> \verbatim
                    245: *>          LDB is INTEGER
                    246: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    247: *> \endverbatim
                    248: *>
                    249: *> \param[out] X
                    250: *> \verbatim
                    251: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    252: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
                    253: *>          to the original system of equations.  Note that A and B are
                    254: *>          modified on exit if EQUED .ne. 'N', and the solution to the
                    255: *>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
                    256: *>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
                    257: *>          and EQUED = 'R' or 'B'.
                    258: *> \endverbatim
                    259: *>
                    260: *> \param[in] LDX
                    261: *> \verbatim
                    262: *>          LDX is INTEGER
                    263: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    264: *> \endverbatim
                    265: *>
                    266: *> \param[out] RCOND
                    267: *> \verbatim
                    268: *>          RCOND is DOUBLE PRECISION
                    269: *>          The estimate of the reciprocal condition number of the matrix
                    270: *>          A after equilibration (if done).  If RCOND is less than the
                    271: *>          machine precision (in particular, if RCOND = 0), the matrix
                    272: *>          is singular to working precision.  This condition is
                    273: *>          indicated by a return code of INFO > 0.
                    274: *> \endverbatim
                    275: *>
                    276: *> \param[out] FERR
                    277: *> \verbatim
                    278: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    279: *>          The estimated forward error bound for each solution vector
                    280: *>          X(j) (the j-th column of the solution matrix X).
                    281: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    282: *>          is an estimated upper bound for the magnitude of the largest
                    283: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    284: *>          largest element in X(j).  The estimate is as reliable as
                    285: *>          the estimate for RCOND, and is almost always a slight
                    286: *>          overestimate of the true error.
                    287: *> \endverbatim
                    288: *>
                    289: *> \param[out] BERR
                    290: *> \verbatim
                    291: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    292: *>          The componentwise relative backward error of each solution
                    293: *>          vector X(j) (i.e., the smallest relative change in
                    294: *>          any element of A or B that makes X(j) an exact solution).
                    295: *> \endverbatim
                    296: *>
                    297: *> \param[out] WORK
                    298: *> \verbatim
                    299: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
                    300: *>          On exit, WORK(1) contains the reciprocal pivot growth
                    301: *>          factor norm(A)/norm(U). The "max absolute element" norm is
                    302: *>          used. If WORK(1) is much less than 1, then the stability
                    303: *>          of the LU factorization of the (equilibrated) matrix A
                    304: *>          could be poor. This also means that the solution X, condition
                    305: *>          estimator RCOND, and forward error bound FERR could be
                    306: *>          unreliable. If factorization fails with 0<INFO<=N, then
                    307: *>          WORK(1) contains the reciprocal pivot growth factor for the
                    308: *>          leading INFO columns of A.
                    309: *> \endverbatim
                    310: *>
                    311: *> \param[out] IWORK
                    312: *> \verbatim
                    313: *>          IWORK is INTEGER array, dimension (N)
                    314: *> \endverbatim
                    315: *>
                    316: *> \param[out] INFO
                    317: *> \verbatim
                    318: *>          INFO is INTEGER
                    319: *>          = 0:  successful exit
                    320: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    321: *>          > 0:  if INFO = i, and i is
                    322: *>                <= N:  U(i,i) is exactly zero.  The factorization has
                    323: *>                       been completed, but the factor U is exactly
                    324: *>                       singular, so the solution and error bounds
                    325: *>                       could not be computed. RCOND = 0 is returned.
                    326: *>                = N+1: U is nonsingular, but RCOND is less than machine
                    327: *>                       precision, meaning that the matrix is singular
                    328: *>                       to working precision.  Nevertheless, the
                    329: *>                       solution and error bounds are computed because
                    330: *>                       there are a number of situations where the
                    331: *>                       computed solution can be more accurate than the
                    332: *>                       value of RCOND would suggest.
                    333: *> \endverbatim
                    334: *
                    335: *  Authors:
                    336: *  ========
                    337: *
                    338: *> \author Univ. of Tennessee 
                    339: *> \author Univ. of California Berkeley 
                    340: *> \author Univ. of Colorado Denver 
                    341: *> \author NAG Ltd. 
                    342: *
1.10    ! bertrand  343: *> \date April 2012
1.8       bertrand  344: *
                    345: *> \ingroup doubleGEsolve
                    346: *
                    347: *  =====================================================================
1.1       bertrand  348:       SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
                    349:      $                   EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
                    350:      $                   WORK, IWORK, INFO )
                    351: *
1.10    ! bertrand  352: *  -- LAPACK driver routine (version 3.4.1) --
1.1       bertrand  353: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    354: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  355: *     April 2012
1.1       bertrand  356: *
                    357: *     .. Scalar Arguments ..
                    358:       CHARACTER          EQUED, FACT, TRANS
                    359:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                    360:       DOUBLE PRECISION   RCOND
                    361: *     ..
                    362: *     .. Array Arguments ..
                    363:       INTEGER            IPIV( * ), IWORK( * )
                    364:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    365:      $                   BERR( * ), C( * ), FERR( * ), R( * ),
                    366:      $                   WORK( * ), X( LDX, * )
                    367: *     ..
                    368: *
                    369: *  =====================================================================
                    370: *
                    371: *     .. Parameters ..
                    372:       DOUBLE PRECISION   ZERO, ONE
                    373:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    374: *     ..
                    375: *     .. Local Scalars ..
                    376:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
                    377:       CHARACTER          NORM
                    378:       INTEGER            I, INFEQU, J
                    379:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
                    380:      $                   ROWCND, RPVGRW, SMLNUM
                    381: *     ..
                    382: *     .. External Functions ..
                    383:       LOGICAL            LSAME
                    384:       DOUBLE PRECISION   DLAMCH, DLANGE, DLANTR
                    385:       EXTERNAL           LSAME, DLAMCH, DLANGE, DLANTR
                    386: *     ..
                    387: *     .. External Subroutines ..
                    388:       EXTERNAL           DGECON, DGEEQU, DGERFS, DGETRF, DGETRS, DLACPY,
                    389:      $                   DLAQGE, XERBLA
                    390: *     ..
                    391: *     .. Intrinsic Functions ..
                    392:       INTRINSIC          MAX, MIN
                    393: *     ..
                    394: *     .. Executable Statements ..
                    395: *
                    396:       INFO = 0
                    397:       NOFACT = LSAME( FACT, 'N' )
                    398:       EQUIL = LSAME( FACT, 'E' )
                    399:       NOTRAN = LSAME( TRANS, 'N' )
                    400:       IF( NOFACT .OR. EQUIL ) THEN
                    401:          EQUED = 'N'
                    402:          ROWEQU = .FALSE.
                    403:          COLEQU = .FALSE.
                    404:       ELSE
                    405:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    406:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    407:          SMLNUM = DLAMCH( 'Safe minimum' )
                    408:          BIGNUM = ONE / SMLNUM
                    409:       END IF
                    410: *
                    411: *     Test the input parameters.
                    412: *
                    413:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    414:      $     THEN
                    415:          INFO = -1
                    416:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    417:      $         LSAME( TRANS, 'C' ) ) THEN
                    418:          INFO = -2
                    419:       ELSE IF( N.LT.0 ) THEN
                    420:          INFO = -3
                    421:       ELSE IF( NRHS.LT.0 ) THEN
                    422:          INFO = -4
                    423:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    424:          INFO = -6
                    425:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    426:          INFO = -8
                    427:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    428:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    429:          INFO = -10
                    430:       ELSE
                    431:          IF( ROWEQU ) THEN
                    432:             RCMIN = BIGNUM
                    433:             RCMAX = ZERO
                    434:             DO 10 J = 1, N
                    435:                RCMIN = MIN( RCMIN, R( J ) )
                    436:                RCMAX = MAX( RCMAX, R( J ) )
                    437:    10       CONTINUE
                    438:             IF( RCMIN.LE.ZERO ) THEN
                    439:                INFO = -11
                    440:             ELSE IF( N.GT.0 ) THEN
                    441:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    442:             ELSE
                    443:                ROWCND = ONE
                    444:             END IF
                    445:          END IF
                    446:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
                    447:             RCMIN = BIGNUM
                    448:             RCMAX = ZERO
                    449:             DO 20 J = 1, N
                    450:                RCMIN = MIN( RCMIN, C( J ) )
                    451:                RCMAX = MAX( RCMAX, C( J ) )
                    452:    20       CONTINUE
                    453:             IF( RCMIN.LE.ZERO ) THEN
                    454:                INFO = -12
                    455:             ELSE IF( N.GT.0 ) THEN
                    456:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    457:             ELSE
                    458:                COLCND = ONE
                    459:             END IF
                    460:          END IF
                    461:          IF( INFO.EQ.0 ) THEN
                    462:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    463:                INFO = -14
                    464:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    465:                INFO = -16
                    466:             END IF
                    467:          END IF
                    468:       END IF
                    469: *
                    470:       IF( INFO.NE.0 ) THEN
                    471:          CALL XERBLA( 'DGESVX', -INFO )
                    472:          RETURN
                    473:       END IF
                    474: *
                    475:       IF( EQUIL ) THEN
                    476: *
                    477: *        Compute row and column scalings to equilibrate the matrix A.
                    478: *
                    479:          CALL DGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
                    480:          IF( INFEQU.EQ.0 ) THEN
                    481: *
                    482: *           Equilibrate the matrix.
                    483: *
                    484:             CALL DLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
                    485:      $                   EQUED )
                    486:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    487:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    488:          END IF
                    489:       END IF
                    490: *
                    491: *     Scale the right hand side.
                    492: *
                    493:       IF( NOTRAN ) THEN
                    494:          IF( ROWEQU ) THEN
                    495:             DO 40 J = 1, NRHS
                    496:                DO 30 I = 1, N
                    497:                   B( I, J ) = R( I )*B( I, J )
                    498:    30          CONTINUE
                    499:    40       CONTINUE
                    500:          END IF
                    501:       ELSE IF( COLEQU ) THEN
                    502:          DO 60 J = 1, NRHS
                    503:             DO 50 I = 1, N
                    504:                B( I, J ) = C( I )*B( I, J )
                    505:    50       CONTINUE
                    506:    60    CONTINUE
                    507:       END IF
                    508: *
                    509:       IF( NOFACT .OR. EQUIL ) THEN
                    510: *
                    511: *        Compute the LU factorization of A.
                    512: *
                    513:          CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF )
                    514:          CALL DGETRF( N, N, AF, LDAF, IPIV, INFO )
                    515: *
                    516: *        Return if INFO is non-zero.
                    517: *
                    518:          IF( INFO.GT.0 ) THEN
                    519: *
                    520: *           Compute the reciprocal pivot growth factor of the
                    521: *           leading rank-deficient INFO columns of A.
                    522: *
                    523:             RPVGRW = DLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
                    524:      $               WORK )
                    525:             IF( RPVGRW.EQ.ZERO ) THEN
                    526:                RPVGRW = ONE
                    527:             ELSE
                    528:                RPVGRW = DLANGE( 'M', N, INFO, A, LDA, WORK ) / RPVGRW
                    529:             END IF
                    530:             WORK( 1 ) = RPVGRW
                    531:             RCOND = ZERO
                    532:             RETURN
                    533:          END IF
                    534:       END IF
                    535: *
                    536: *     Compute the norm of the matrix A and the
                    537: *     reciprocal pivot growth factor RPVGRW.
                    538: *
                    539:       IF( NOTRAN ) THEN
                    540:          NORM = '1'
                    541:       ELSE
                    542:          NORM = 'I'
                    543:       END IF
                    544:       ANORM = DLANGE( NORM, N, N, A, LDA, WORK )
                    545:       RPVGRW = DLANTR( 'M', 'U', 'N', N, N, AF, LDAF, WORK )
                    546:       IF( RPVGRW.EQ.ZERO ) THEN
                    547:          RPVGRW = ONE
                    548:       ELSE
                    549:          RPVGRW = DLANGE( 'M', N, N, A, LDA, WORK ) / RPVGRW
                    550:       END IF
                    551: *
                    552: *     Compute the reciprocal of the condition number of A.
                    553: *
                    554:       CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
                    555: *
                    556: *     Compute the solution matrix X.
                    557: *
                    558:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    559:       CALL DGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
                    560: *
                    561: *     Use iterative refinement to improve the computed solution and
                    562: *     compute error bounds and backward error estimates for it.
                    563: *
                    564:       CALL DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
                    565:      $             LDX, FERR, BERR, WORK, IWORK, INFO )
                    566: *
                    567: *     Transform the solution matrix X to a solution of the original
                    568: *     system.
                    569: *
                    570:       IF( NOTRAN ) THEN
                    571:          IF( COLEQU ) THEN
                    572:             DO 80 J = 1, NRHS
                    573:                DO 70 I = 1, N
                    574:                   X( I, J ) = C( I )*X( I, J )
                    575:    70          CONTINUE
                    576:    80       CONTINUE
                    577:             DO 90 J = 1, NRHS
                    578:                FERR( J ) = FERR( J ) / COLCND
                    579:    90       CONTINUE
                    580:          END IF
                    581:       ELSE IF( ROWEQU ) THEN
                    582:          DO 110 J = 1, NRHS
                    583:             DO 100 I = 1, N
                    584:                X( I, J ) = R( I )*X( I, J )
                    585:   100       CONTINUE
                    586:   110    CONTINUE
                    587:          DO 120 J = 1, NRHS
                    588:             FERR( J ) = FERR( J ) / ROWCND
                    589:   120    CONTINUE
                    590:       END IF
                    591: *
                    592:       WORK( 1 ) = RPVGRW
                    593: *
                    594: *     Set INFO = N+1 if the matrix is singular to working precision.
                    595: *
                    596:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    597:      $   INFO = N + 1
                    598:       RETURN
                    599: *
                    600: *     End of DGESVX
                    601: *
                    602:       END

CVSweb interface <joel.bertrand@systella.fr>