--- rpl/lapack/lapack/dgesvj.f 2011/07/22 07:38:05 1.6 +++ rpl/lapack/lapack/dgesvj.f 2017/06/17 11:06:17 1.17 @@ -1,22 +1,347 @@ - SUBROUTINE DGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, - $ LDV, WORK, LWORK, INFO ) +*> \brief \b DGESVJ +* +* =========== DOCUMENTATION =========== * -* -- LAPACK routine (version 3.3.1) -- +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ * -* -- Contributed by Zlatko Drmac of the University of Zagreb and -- -* -- Kresimir Veselic of the Fernuniversitaet Hagen -- -* -- April 2011 -- +*> \htmlonly +*> Download DGESVJ + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, +* LDV, WORK, LWORK, INFO ) +* +* .. Scalar Arguments .. +* INTEGER INFO, LDA, LDV, LWORK, M, MV, N +* CHARACTER*1 JOBA, JOBU, JOBV +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), SVA( N ), V( LDV, * ), +* $ WORK( LWORK ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DGESVJ computes the singular value decomposition (SVD) of a real +*> M-by-N matrix A, where M >= N. The SVD of A is written as +*> [++] [xx] [x0] [xx] +*> A = U * SIGMA * V^t, [++] = [xx] * [ox] * [xx] +*> [++] [xx] +*> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal +*> matrix, and V is an N-by-N orthogonal matrix. The diagonal elements +*> of SIGMA are the singular values of A. The columns of U and V are the +*> left and the right singular vectors of A, respectively. +*> DGESVJ can sometimes compute tiny singular values and their singular vectors much +*> more accurately than other SVD routines, see below under Further Details. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] JOBA +*> \verbatim +*> JOBA is CHARACTER* 1 +*> Specifies the structure of A. +*> = 'L': The input matrix A is lower triangular; +*> = 'U': The input matrix A is upper triangular; +*> = 'G': The input matrix A is general M-by-N matrix, M >= N. +*> \endverbatim +*> +*> \param[in] JOBU +*> \verbatim +*> JOBU is CHARACTER*1 +*> Specifies whether to compute the left singular vectors +*> (columns of U): +*> = 'U': The left singular vectors corresponding to the nonzero +*> singular values are computed and returned in the leading +*> columns of A. See more details in the description of A. +*> The default numerical orthogonality threshold is set to +*> approximately TOL=CTOL*EPS, CTOL=DSQRT(M), EPS=DLAMCH('E'). +*> = 'C': Analogous to JOBU='U', except that user can control the +*> level of numerical orthogonality of the computed left +*> singular vectors. TOL can be set to TOL = CTOL*EPS, where +*> CTOL is given on input in the array WORK. +*> No CTOL smaller than ONE is allowed. CTOL greater +*> than 1 / EPS is meaningless. The option 'C' +*> can be used if M*EPS is satisfactory orthogonality +*> of the computed left singular vectors, so CTOL=M could +*> save few sweeps of Jacobi rotations. +*> See the descriptions of A and WORK(1). +*> = 'N': The matrix U is not computed. However, see the +*> description of A. +*> \endverbatim +*> +*> \param[in] JOBV +*> \verbatim +*> JOBV is CHARACTER*1 +*> Specifies whether to compute the right singular vectors, that +*> is, the matrix V: +*> = 'V' : the matrix V is computed and returned in the array V +*> = 'A' : the Jacobi rotations are applied to the MV-by-N +*> array V. In other words, the right singular vector +*> matrix V is not computed explicitly, instead it is +*> applied to an MV-by-N matrix initially stored in the +*> first MV rows of V. +*> = 'N' : the matrix V is not computed and the array V is not +*> referenced +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the input matrix A. 1/DLAMCH('E') > M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the input matrix A. +*> M >= N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,N) +*> On entry, the M-by-N matrix A. +*> On exit : +*> If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C' : +*> If INFO .EQ. 0 : +*> RANKA orthonormal columns of U are returned in the +*> leading RANKA columns of the array A. Here RANKA <= N +*> is the number of computed singular values of A that are +*> above the underflow threshold DLAMCH('S'). The singular +*> vectors corresponding to underflowed or zero singular +*> values are not computed. The value of RANKA is returned +*> in the array WORK as RANKA=NINT(WORK(2)). Also see the +*> descriptions of SVA and WORK. The computed columns of U +*> are mutually numerically orthogonal up to approximately +*> TOL=DSQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'), +*> see the description of JOBU. +*> If INFO .GT. 0 : +*> the procedure DGESVJ did not converge in the given number +*> of iterations (sweeps). In that case, the computed +*> columns of U may not be orthogonal up to TOL. The output +*> U (stored in A), SIGMA (given by the computed singular +*> values in SVA(1:N)) and V is still a decomposition of the +*> input matrix A in the sense that the residual +*> ||A-SCALE*U*SIGMA*V^T||_2 / ||A||_2 is small. +*> +*> If JOBU .EQ. 'N' : +*> If INFO .EQ. 0 : +*> Note that the left singular vectors are 'for free' in the +*> one-sided Jacobi SVD algorithm. However, if only the +*> singular values are needed, the level of numerical +*> orthogonality of U is not an issue and iterations are +*> stopped when the columns of the iterated matrix are +*> numerically orthogonal up to approximately M*EPS. Thus, +*> on exit, A contains the columns of U scaled with the +*> corresponding singular values. +*> If INFO .GT. 0 : +*> the procedure DGESVJ did not converge in the given number +*> of iterations (sweeps). +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,M). +*> \endverbatim +*> +*> \param[out] SVA +*> \verbatim +*> SVA is DOUBLE PRECISION array, dimension (N) +*> On exit : +*> If INFO .EQ. 0 : +*> depending on the value SCALE = WORK(1), we have: +*> If SCALE .EQ. ONE : +*> SVA(1:N) contains the computed singular values of A. +*> During the computation SVA contains the Euclidean column +*> norms of the iterated matrices in the array A. +*> If SCALE .NE. ONE : +*> The singular values of A are SCALE*SVA(1:N), and this +*> factored representation is due to the fact that some of the +*> singular values of A might underflow or overflow. +*> If INFO .GT. 0 : +*> the procedure DGESVJ did not converge in the given number of +*> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate. +*> \endverbatim +*> +*> \param[in] MV +*> \verbatim +*> MV is INTEGER +*> If JOBV .EQ. 'A', then the product of Jacobi rotations in DGESVJ +*> is applied to the first MV rows of V. See the description of JOBV. +*> \endverbatim +*> +*> \param[in,out] V +*> \verbatim +*> V is DOUBLE PRECISION array, dimension (LDV,N) +*> If JOBV = 'V', then V contains on exit the N-by-N matrix of +*> the right singular vectors; +*> If JOBV = 'A', then V contains the product of the computed right +*> singular vector matrix and the initial matrix in +*> the array V. +*> If JOBV = 'N', then V is not referenced. +*> \endverbatim +*> +*> \param[in] LDV +*> \verbatim +*> LDV is INTEGER +*> The leading dimension of the array V, LDV .GE. 1. +*> If JOBV .EQ. 'V', then LDV .GE. max(1,N). +*> If JOBV .EQ. 'A', then LDV .GE. max(1,MV) . +*> \endverbatim +*> +*> \param[in,out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension MAX(6,M+N). +*> On entry : +*> If JOBU .EQ. 'C' : +*> WORK(1) = CTOL, where CTOL defines the threshold for convergence. +*> The process stops if all columns of A are mutually +*> orthogonal up to CTOL*EPS, EPS=DLAMCH('E'). +*> It is required that CTOL >= ONE, i.e. it is not +*> allowed to force the routine to obtain orthogonality +*> below EPS. +*> On exit : +*> WORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N) +*> are the computed singular values of A. +*> (See description of SVA().) +*> WORK(2) = NINT(WORK(2)) is the number of the computed nonzero +*> singular values. +*> WORK(3) = NINT(WORK(3)) is the number of the computed singular +*> values that are larger than the underflow threshold. +*> WORK(4) = NINT(WORK(4)) is the number of sweeps of Jacobi +*> rotations needed for numerical convergence. +*> WORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep. +*> This is useful information in cases when DGESVJ did +*> not converge, as it can be used to estimate whether +*> the output is stil useful and for post festum analysis. +*> WORK(6) = the largest absolute value over all sines of the +*> Jacobi rotation angles in the last sweep. It can be +*> useful for a post festum analysis. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> length of WORK, WORK >= MAX(6,M+N) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0 : successful exit. +*> < 0 : if INFO = -i, then the i-th argument had an illegal value +*> > 0 : DGESVJ did not converge in the maximal allowed number (30) +*> of sweeps. The output may still be useful. See the +*> description of WORK. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date December 2016 +* +*> \ingroup doubleGEcomputational +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane +*> rotations. The rotations are implemented as fast scaled rotations of +*> Anda and Park [1]. In the case of underflow of the Jacobi angle, a +*> modified Jacobi transformation of Drmac [4] is used. Pivot strategy uses +*> column interchanges of de Rijk [2]. The relative accuracy of the computed +*> singular values and the accuracy of the computed singular vectors (in +*> angle metric) is as guaranteed by the theory of Demmel and Veselic [3]. +*> The condition number that determines the accuracy in the full rank case +*> is essentially min_{D=diag} kappa(A*D), where kappa(.) is the +*> spectral condition number. The best performance of this Jacobi SVD +*> procedure is achieved if used in an accelerated version of Drmac and +*> Veselic [5,6], and it is the kernel routine in the SIGMA library [7]. +*> Some tunning parameters (marked with [TP]) are available for the +*> implementer. +*> The computational range for the nonzero singular values is the machine +*> number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even +*> denormalized singular values can be computed with the corresponding +*> gradual loss of accurate digits. +*> \endverbatim +* +*> \par Contributors: +* ================== +*> +*> \verbatim +*> +*> ============ +*> +*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) +*> \endverbatim +* +*> \par References: +* ================ +*> +*> \verbatim +*> +*> [1] A. A. Anda and H. Park: Fast plane rotations with dynamic scaling. +*> SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174. +*> [2] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the +*> singular value decomposition on a vector computer. +*> SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371. +*> [3] J. Demmel and K. Veselic: Jacobi method is more accurate than QR. +*> [4] Z. Drmac: Implementation of Jacobi rotations for accurate singular +*> value computation in floating point arithmetic. +*> SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222. +*> [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. +*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. +*> LAPACK Working note 169. +*> [6] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. +*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. +*> LAPACK Working note 170. +*> [7] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, +*> QSVD, (H,K)-SVD computations. +*> Department of Mathematics, University of Zagreb, 2008. +*> \endverbatim +* +*> \par Bugs, examples and comments: +* ================================= +*> +*> \verbatim +*> =========================== +*> Please report all bugs and send interesting test examples and comments to +*> drmac@math.hr. Thank you. +*> \endverbatim +*> +* ===================================================================== + SUBROUTINE DGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, + $ LDV, WORK, LWORK, INFO ) * +* -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* December 2016 * -* This routine is also part of SIGMA (version 1.23, October 23. 2008.) -* SIGMA is a library of algorithms for highly accurate algorithms for -* computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the -* eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0. -* - IMPLICIT NONE -* .. * .. Scalar Arguments .. INTEGER INFO, LDA, LDV, LWORK, M, MV, N CHARACTER*1 JOBA, JOBU, JOBV @@ -26,237 +351,11 @@ $ WORK( LWORK ) * .. * -* Purpose -* ======= -* -* DGESVJ computes the singular value decomposition (SVD) of a real -* M-by-N matrix A, where M >= N. The SVD of A is written as -* [++] [xx] [x0] [xx] -* A = U * SIGMA * V^t, [++] = [xx] * [ox] * [xx] -* [++] [xx] -* where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal -* matrix, and V is an N-by-N orthogonal matrix. The diagonal elements -* of SIGMA are the singular values of A. The columns of U and V are the -* left and the right singular vectors of A, respectively. -* -* Further Details -* ~~~~~~~~~~~~~~~ -* The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane -* rotations. The rotations are implemented as fast scaled rotations of -* Anda and Park [1]. In the case of underflow of the Jacobi angle, a -* modified Jacobi transformation of Drmac [4] is used. Pivot strategy uses -* column interchanges of de Rijk [2]. The relative accuracy of the computed -* singular values and the accuracy of the computed singular vectors (in -* angle metric) is as guaranteed by the theory of Demmel and Veselic [3]. -* The condition number that determines the accuracy in the full rank case -* is essentially min_{D=diag} kappa(A*D), where kappa(.) is the -* spectral condition number. The best performance of this Jacobi SVD -* procedure is achieved if used in an accelerated version of Drmac and -* Veselic [5,6], and it is the kernel routine in the SIGMA library [7]. -* Some tunning parameters (marked with [TP]) are available for the -* implementer. -* The computational range for the nonzero singular values is the machine -* number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even -* denormalized singular values can be computed with the corresponding -* gradual loss of accurate digits. -* -* Contributors -* ~~~~~~~~~~~~ -* Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) -* -* References -* ~~~~~~~~~~ -* [1] A. A. Anda and H. Park: Fast plane rotations with dynamic scaling. -* SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174. -* [2] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the -* singular value decomposition on a vector computer. -* SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371. -* [3] J. Demmel and K. Veselic: Jacobi method is more accurate than QR. -* [4] Z. Drmac: Implementation of Jacobi rotations for accurate singular -* value computation in floating point arithmetic. -* SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222. -* [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. -* SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. -* LAPACK Working note 169. -* [6] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. -* SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. -* LAPACK Working note 170. -* [7] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, -* QSVD, (H,K)-SVD computations. -* Department of Mathematics, University of Zagreb, 2008. -* -* Bugs, Examples and Comments -* ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -* Please report all bugs and send interesting test examples and comments to -* drmac@math.hr. Thank you. -* -* Arguments -* ========= -* -* JOBA (input) CHARACTER* 1 -* Specifies the structure of A. -* = 'L': The input matrix A is lower triangular; -* = 'U': The input matrix A is upper triangular; -* = 'G': The input matrix A is general M-by-N matrix, M >= N. -* -* JOBU (input) CHARACTER*1 -* Specifies whether to compute the left singular vectors -* (columns of U): -* = 'U': The left singular vectors corresponding to the nonzero -* singular values are computed and returned in the leading -* columns of A. See more details in the description of A. -* The default numerical orthogonality threshold is set to -* approximately TOL=CTOL*EPS, CTOL=DSQRT(M), EPS=DLAMCH('E'). -* = 'C': Analogous to JOBU='U', except that user can control the -* level of numerical orthogonality of the computed left -* singular vectors. TOL can be set to TOL = CTOL*EPS, where -* CTOL is given on input in the array WORK. -* No CTOL smaller than ONE is allowed. CTOL greater -* than 1 / EPS is meaningless. The option 'C' -* can be used if M*EPS is satisfactory orthogonality -* of the computed left singular vectors, so CTOL=M could -* save few sweeps of Jacobi rotations. -* See the descriptions of A and WORK(1). -* = 'N': The matrix U is not computed. However, see the -* description of A. -* -* JOBV (input) CHARACTER*1 -* Specifies whether to compute the right singular vectors, that -* is, the matrix V: -* = 'V' : the matrix V is computed and returned in the array V -* = 'A' : the Jacobi rotations are applied to the MV-by-N -* array V. In other words, the right singular vector -* matrix V is not computed explicitly, instead it is -* applied to an MV-by-N matrix initially stored in the -* first MV rows of V. -* = 'N' : the matrix V is not computed and the array V is not -* referenced -* -* M (input) INTEGER -* The number of rows of the input matrix A. 1/DLAMCH('E') > M >= 0. -* -* N (input) INTEGER -* The number of columns of the input matrix A. -* M >= N >= 0. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) -* On entry, the M-by-N matrix A. -* On exit : -* If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C' : -* If INFO .EQ. 0 : -* RANKA orthonormal columns of U are returned in the -* leading RANKA columns of the array A. Here RANKA <= N -* is the number of computed singular values of A that are -* above the underflow threshold DLAMCH('S'). The singular -* vectors corresponding to underflowed or zero singular -* values are not computed. The value of RANKA is returned -* in the array WORK as RANKA=NINT(WORK(2)). Also see the -* descriptions of SVA and WORK. The computed columns of U -* are mutually numerically orthogonal up to approximately -* TOL=DSQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'), -* see the description of JOBU. -* If INFO .GT. 0 : -* the procedure DGESVJ did not converge in the given number -* of iterations (sweeps). In that case, the computed -* columns of U may not be orthogonal up to TOL. The output -* U (stored in A), SIGMA (given by the computed singular -* values in SVA(1:N)) and V is still a decomposition of the -* input matrix A in the sense that the residual -* ||A-SCALE*U*SIGMA*V^T||_2 / ||A||_2 is small. -* -* If JOBU .EQ. 'N' : -* If INFO .EQ. 0 : -* Note that the left singular vectors are 'for free' in the -* one-sided Jacobi SVD algorithm. However, if only the -* singular values are needed, the level of numerical -* orthogonality of U is not an issue and iterations are -* stopped when the columns of the iterated matrix are -* numerically orthogonal up to approximately M*EPS. Thus, -* on exit, A contains the columns of U scaled with the -* corresponding singular values. -* If INFO .GT. 0 : -* the procedure DGESVJ did not converge in the given number -* of iterations (sweeps). -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,M). -* -* SVA (workspace/output) DOUBLE PRECISION array, dimension (N) -* On exit : -* If INFO .EQ. 0 : -* depending on the value SCALE = WORK(1), we have: -* If SCALE .EQ. ONE : -* SVA(1:N) contains the computed singular values of A. -* During the computation SVA contains the Euclidean column -* norms of the iterated matrices in the array A. -* If SCALE .NE. ONE : -* The singular values of A are SCALE*SVA(1:N), and this -* factored representation is due to the fact that some of the -* singular values of A might underflow or overflow. -* If INFO .GT. 0 : -* the procedure DGESVJ did not converge in the given number of -* iterations (sweeps) and SCALE*SVA(1:N) may not be accurate. -* -* MV (input) INTEGER -* If JOBV .EQ. 'A', then the product of Jacobi rotations in DGESVJ -* is applied to the first MV rows of V. See the description of JOBV. -* -* V (input/output) DOUBLE PRECISION array, dimension (LDV,N) -* If JOBV = 'V', then V contains on exit the N-by-N matrix of -* the right singular vectors; -* If JOBV = 'A', then V contains the product of the computed right -* singular vector matrix and the initial matrix in -* the array V. -* If JOBV = 'N', then V is not referenced. -* -* LDV (input) INTEGER -* The leading dimension of the array V, LDV .GE. 1. -* If JOBV .EQ. 'V', then LDV .GE. max(1,N). -* If JOBV .EQ. 'A', then LDV .GE. max(1,MV) . -* -* WORK (input/workspace/output) DOUBLE PRECISION array, dimension max(4,M+N). -* On entry : -* If JOBU .EQ. 'C' : -* WORK(1) = CTOL, where CTOL defines the threshold for convergence. -* The process stops if all columns of A are mutually -* orthogonal up to CTOL*EPS, EPS=DLAMCH('E'). -* It is required that CTOL >= ONE, i.e. it is not -* allowed to force the routine to obtain orthogonality -* below EPS. -* On exit : -* WORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N) -* are the computed singular values of A. -* (See description of SVA().) -* WORK(2) = NINT(WORK(2)) is the number of the computed nonzero -* singular values. -* WORK(3) = NINT(WORK(3)) is the number of the computed singular -* values that are larger than the underflow threshold. -* WORK(4) = NINT(WORK(4)) is the number of sweeps of Jacobi -* rotations needed for numerical convergence. -* WORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep. -* This is useful information in cases when DGESVJ did -* not converge, as it can be used to estimate whether -* the output is stil useful and for post festum analysis. -* WORK(6) = the largest absolute value over all sines of the -* Jacobi rotation angles in the last sweep. It can be -* useful for a post festum analysis. -* -* LWORK (input) INTEGER -* length of WORK, WORK >= MAX(6,M+N) -* -* INFO (output) INTEGER -* = 0 : successful exit. -* < 0 : if INFO = -i, then the i-th argument had an illegal value -* > 0 : DGESVJ did not converge in the maximal allowed number (30) -* of sweeps. The output may still be useful. See the -* description of WORK. -* * ===================================================================== * * .. Local Parameters .. - DOUBLE PRECISION ZERO, HALF, ONE, TWO - PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0, - $ TWO = 2.0D0 ) + DOUBLE PRECISION ZERO, HALF, ONE + PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0) INTEGER NSWEEP PARAMETER ( NSWEEP = 30 ) * .. @@ -277,7 +376,7 @@ DOUBLE PRECISION FASTR( 5 ) * .. * .. Intrinsic Functions .. - INTRINSIC DABS, DMAX1, DMIN1, DBLE, MIN0, DSIGN, DSQRT + INTRINSIC DABS, MAX, MIN, DBLE, DSIGN, DSQRT * .. * .. External Functions .. * .. @@ -331,7 +430,7 @@ INFO = -11 ELSE IF( UCTOL .AND. ( WORK( 1 ).LE.ONE ) ) THEN INFO = -12 - ELSE IF( LWORK.LT.MAX0( M+N, 6 ) ) THEN + ELSE IF( LWORK.LT.MAX( M+N, 6 ) ) THEN INFO = -13 ELSE INFO = 0 @@ -497,8 +596,8 @@ AAPP = ZERO AAQQ = BIG DO 4781 p = 1, N - IF( SVA( p ).NE.ZERO )AAQQ = DMIN1( AAQQ, SVA( p ) ) - AAPP = DMAX1( AAPP, SVA( p ) ) + IF( SVA( p ).NE.ZERO )AAQQ = MIN( AAQQ, SVA( p ) ) + AAPP = MAX( AAPP, SVA( p ) ) 4781 CONTINUE * * #:) Quick return for zero matrix @@ -539,19 +638,19 @@ TEMP1 = DSQRT( BIG / DBLE( N ) ) IF( ( AAPP.LE.SN ) .OR. ( AAQQ.GE.TEMP1 ) .OR. $ ( ( SN.LE.AAQQ ) .AND. ( AAPP.LE.TEMP1 ) ) ) THEN - TEMP1 = DMIN1( BIG, TEMP1 / AAPP ) + TEMP1 = MIN( BIG, TEMP1 / AAPP ) * AAQQ = AAQQ*TEMP1 * AAPP = AAPP*TEMP1 ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.LE.TEMP1 ) ) THEN - TEMP1 = DMIN1( SN / AAQQ, BIG / ( AAPP*DSQRT( DBLE( N ) ) ) ) + TEMP1 = MIN( SN / AAQQ, BIG / ( AAPP*DSQRT( DBLE( N ) ) ) ) * AAQQ = AAQQ*TEMP1 * AAPP = AAPP*TEMP1 ELSE IF( ( AAQQ.GE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN - TEMP1 = DMAX1( SN / AAQQ, TEMP1 / AAPP ) + TEMP1 = MAX( SN / AAQQ, TEMP1 / AAPP ) * AAQQ = AAQQ*TEMP1 * AAPP = AAPP*TEMP1 ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN - TEMP1 = DMIN1( SN / AAQQ, BIG / ( DSQRT( DBLE( N ) )*AAPP ) ) + TEMP1 = MIN( SN / AAQQ, BIG / ( DSQRT( DBLE( N ) )*AAPP ) ) * AAQQ = AAQQ*TEMP1 * AAPP = AAPP*TEMP1 ELSE @@ -592,7 +691,7 @@ * The boundaries are determined dynamically, based on the number of * pivots above a threshold. * - KBL = MIN0( 8, N ) + KBL = MIN( 8, N ) *[TP] KBL is a tuning parameter that defines the tile size in the * tiling of the p-q loops of pivot pairs. In general, an optimal * value of KBL depends on the matrix dimensions and on the @@ -604,7 +703,7 @@ BLSKIP = KBL**2 *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. * - ROWSKIP = MIN0( 5, KBL ) + ROWSKIP = MIN( 5, KBL ) *[TP] ROWSKIP is a tuning parameter. * LKAHEAD = 1 @@ -615,7 +714,7 @@ * invokes cubic convergence. Big part of this cycle is done inside * canonical subspaces of dimensions less than M. * - IF( ( LOWER .OR. UPPER ) .AND. ( N.GT.MAX0( 64, 4*KBL ) ) ) THEN + IF( ( LOWER .OR. UPPER ) .AND. ( N.GT.MAX( 64, 4*KBL ) ) ) THEN *[TP] The number of partition levels and the actual partition are * tuning parameters. N4 = N / 4 @@ -713,11 +812,11 @@ * igl = ( ibr-1 )*KBL + 1 * - DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr ) + DO 1002 ir1 = 0, MIN( LKAHEAD, NBL-ibr ) * igl = igl + ir1*KBL * - DO 2001 p = igl, MIN0( igl+KBL-1, N-1 ) + DO 2001 p = igl, MIN( igl+KBL-1, N-1 ) * * .. de Rijk's pivoting * @@ -766,7 +865,7 @@ * PSKIPPED = 0 * - DO 2002 q = p + 1, MIN0( igl+KBL-1, N ) + DO 2002 q = p + 1, MIN( igl+KBL-1, N ) * AAQQ = SVA( q ) * @@ -805,7 +904,7 @@ END IF END IF * - MXAAPQ = DMAX1( MXAAPQ, DABS( AAPQ ) ) + MXAAPQ = MAX( MXAAPQ, DABS( AAPQ ) ) * * TO rotate or NOT to rotate, THAT is the question ... * @@ -838,11 +937,11 @@ $ V( 1, p ), 1, $ V( 1, q ), 1, $ FASTR ) - SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, + SVA( q ) = AAQQ*DSQRT( MAX( ZERO, $ ONE+T*APOAQ*AAPQ ) ) - AAPP = AAPP*DSQRT( DMAX1( ZERO, + AAPP = AAPP*DSQRT( MAX( ZERO, $ ONE-T*AQOAP*AAPQ ) ) - MXSINJ = DMAX1( MXSINJ, DABS( T ) ) + MXSINJ = MAX( MXSINJ, DABS( T ) ) * ELSE * @@ -854,10 +953,10 @@ CS = DSQRT( ONE / ( ONE+T*T ) ) SN = T*CS * - MXSINJ = DMAX1( MXSINJ, DABS( SN ) ) - SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, + MXSINJ = MAX( MXSINJ, DABS( SN ) ) + SVA( q ) = AAQQ*DSQRT( MAX( ZERO, $ ONE+T*APOAQ*AAPQ ) ) - AAPP = AAPP*DSQRT( DMAX1( ZERO, + AAPP = AAPP*DSQRT( MAX( ZERO, $ ONE-T*AQOAP*AAPQ ) ) * APOAQ = WORK( p ) / WORK( q ) @@ -971,9 +1070,9 @@ $ A( 1, q ), 1 ) CALL DLASCL( 'G', 0, 0, ONE, AAQQ, M, $ 1, A( 1, q ), LDA, IERR ) - SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, + SVA( q ) = AAQQ*DSQRT( MAX( ZERO, $ ONE-AAPQ*AAPQ ) ) - MXSINJ = DMAX1( MXSINJ, SFMIN ) + MXSINJ = MAX( MXSINJ, SFMIN ) END IF * END IF ROTOK THEN ... ELSE * @@ -1039,7 +1138,7 @@ ELSE SVA( p ) = AAPP IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) ) - $ NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p + $ NOTROT = NOTROT + MIN( igl+KBL-1, N ) - p END IF * 2001 CONTINUE @@ -1059,14 +1158,14 @@ * doing the block at ( ibr, jbc ) * IJBLSK = 0 - DO 2100 p = igl, MIN0( igl+KBL-1, N ) + DO 2100 p = igl, MIN( igl+KBL-1, N ) * AAPP = SVA( p ) IF( AAPP.GT.ZERO ) THEN * PSKIPPED = 0 * - DO 2200 q = jgl, MIN0( jgl+KBL-1, N ) + DO 2200 q = jgl, MIN( jgl+KBL-1, N ) * AAQQ = SVA( q ) IF( AAQQ.GT.ZERO ) THEN @@ -1116,7 +1215,7 @@ END IF END IF * - MXAAPQ = DMAX1( MXAAPQ, DABS( AAPQ ) ) + MXAAPQ = MAX( MXAAPQ, DABS( AAPQ ) ) * * TO rotate or NOT to rotate, THAT is the question ... * @@ -1144,11 +1243,11 @@ $ V( 1, p ), 1, $ V( 1, q ), 1, $ FASTR ) - SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, + SVA( q ) = AAQQ*DSQRT( MAX( ZERO, $ ONE+T*APOAQ*AAPQ ) ) - AAPP = AAPP*DSQRT( DMAX1( ZERO, + AAPP = AAPP*DSQRT( MAX( ZERO, $ ONE-T*AQOAP*AAPQ ) ) - MXSINJ = DMAX1( MXSINJ, DABS( T ) ) + MXSINJ = MAX( MXSINJ, DABS( T ) ) ELSE * * .. choose correct signum for THETA and rotate @@ -1159,10 +1258,10 @@ $ DSQRT( ONE+THETA*THETA ) ) CS = DSQRT( ONE / ( ONE+T*T ) ) SN = T*CS - MXSINJ = DMAX1( MXSINJ, DABS( SN ) ) - SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, + MXSINJ = MAX( MXSINJ, DABS( SN ) ) + SVA( q ) = AAQQ*DSQRT( MAX( ZERO, $ ONE+T*APOAQ*AAPQ ) ) - AAPP = AAPP*DSQRT( DMAX1( ZERO, + AAPP = AAPP*DSQRT( MAX( ZERO, $ ONE-T*AQOAP*AAPQ ) ) * APOAQ = WORK( p ) / WORK( q ) @@ -1279,9 +1378,9 @@ CALL DLASCL( 'G', 0, 0, ONE, AAQQ, $ M, 1, A( 1, q ), LDA, $ IERR ) - SVA( q ) = AAQQ*DSQRT( DMAX1( ZERO, + SVA( q ) = AAQQ*DSQRT( MAX( ZERO, $ ONE-AAPQ*AAPQ ) ) - MXSINJ = DMAX1( MXSINJ, SFMIN ) + MXSINJ = MAX( MXSINJ, SFMIN ) ELSE CALL DCOPY( M, A( 1, q ), 1, $ WORK( N+1 ), 1 ) @@ -1297,9 +1396,9 @@ CALL DLASCL( 'G', 0, 0, ONE, AAPP, $ M, 1, A( 1, p ), LDA, $ IERR ) - SVA( p ) = AAPP*DSQRT( DMAX1( ZERO, + SVA( p ) = AAPP*DSQRT( MAX( ZERO, $ ONE-AAPQ*AAPQ ) ) - MXSINJ = DMAX1( MXSINJ, SFMIN ) + MXSINJ = MAX( MXSINJ, SFMIN ) END IF END IF * END IF ROTOK THEN ... ELSE @@ -1369,7 +1468,7 @@ ELSE * IF( AAPP.EQ.ZERO )NOTROT = NOTROT + - $ MIN0( jgl+KBL-1, N ) - jgl + 1 + $ MIN( jgl+KBL-1, N ) - jgl + 1 IF( AAPP.LT.ZERO )NOTROT = 0 * END IF @@ -1380,7 +1479,7 @@ * end of the jbc-loop 2011 CONTINUE *2011 bailed out of the jbc-loop - DO 2012 p = igl, MIN0( igl+KBL-1, N ) + DO 2012 p = igl, MIN( igl+KBL-1, N ) SVA( p ) = DABS( SVA( p ) ) 2012 CONTINUE *** @@ -1476,11 +1575,11 @@ END IF * * Undo scaling, if necessary (and possible). - IF( ( ( SKL.GT.ONE ) .AND. ( SVA( 1 ).LT.( BIG / - $ SKL) ) ) .OR. ( ( SKL.LT.ONE ) .AND. ( SVA( N2 ).GT. + IF( ( ( SKL.GT.ONE ) .AND. ( SVA( 1 ).LT.( BIG / SKL) ) ) + $ .OR. ( ( SKL.LT.ONE ) .AND. ( SVA( MAX( N2, 1 ) ) .GT. $ ( SFMIN / SKL) ) ) ) THEN DO 2400 p = 1, N - SVA( p ) = SKL*SVA( p ) + SVA( P ) = SKL*SVA( P ) 2400 CONTINUE SKL= ONE END IF