Annotation of rpl/lapack/lapack/dgesvdq.f, revision 1.1

1.1     ! bertrand    1: *> \brief <b> DGESVDQ computes the singular value decomposition (SVD) with a QR-Preconditioned QR SVD Method for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGESVDQ + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvdq.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvdq.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvdq.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *      SUBROUTINE DGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
        !            22: *                          S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK,
        !            23: *                          WORK, LWORK, RWORK, LRWORK, INFO )
        !            24: *
        !            25: *     .. Scalar Arguments ..
        !            26: *      IMPLICIT    NONE
        !            27: *      CHARACTER   JOBA, JOBP, JOBR, JOBU, JOBV
        !            28: *      INTEGER     M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LWORK, LRWORK,
        !            29: *                  INFO
        !            30: *     ..
        !            31: *     .. Array Arguments ..
        !            32: *      DOUBLE PRECISION  A( LDA, * ), U( LDU, * ), V( LDV, * ), WORK( * )
        !            33: *      DOUBLE PRECISION  S( * ), RWORK( * )
        !            34: *      INTEGER     IWORK( * )
        !            35: *       ..
        !            36: *
        !            37: *
        !            38: *> \par Purpose:
        !            39: *  =============
        !            40: *>
        !            41: *> \verbatim
        !            42: *>
        !            43: *> DGESVDQ computes the singular value decomposition (SVD) of a real
        !            44: *> M-by-N matrix A, where M >= N. The SVD of A is written as
        !            45: *>                                    [++]   [xx]   [x0]   [xx]
        !            46: *>              A = U * SIGMA * V^*,  [++] = [xx] * [ox] * [xx]
        !            47: *>                                    [++]   [xx]
        !            48: *> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
        !            49: *> matrix, and V is an N-by-N orthogonal matrix. The diagonal elements
        !            50: *> of SIGMA are the singular values of A. The columns of U and V are the
        !            51: *> left and the right singular vectors of A, respectively.
        !            52: *> \endverbatim
        !            53: *
        !            54: *  Arguments:
        !            55: *  ==========
        !            56: *
        !            57: *> \param[in] JOBA
        !            58: *> \verbatim
        !            59: *>  JOBA is CHARACTER*1
        !            60: *>  Specifies the level of accuracy in the computed SVD
        !            61: *>  = 'A' The requested accuracy corresponds to having the backward
        !            62: *>        error bounded by || delta A ||_F <= f(m,n) * EPS * || A ||_F,
        !            63: *>        where EPS = DLAMCH('Epsilon'). This authorises DGESVDQ to
        !            64: *>        truncate the computed triangular factor in a rank revealing
        !            65: *>        QR factorization whenever the truncated part is below the
        !            66: *>        threshold of the order of EPS * ||A||_F. This is aggressive
        !            67: *>        truncation level.
        !            68: *>  = 'M' Similarly as with 'A', but the truncation is more gentle: it
        !            69: *>        is allowed only when there is a drop on the diagonal of the
        !            70: *>        triangular factor in the QR factorization. This is medium
        !            71: *>        truncation level.
        !            72: *>  = 'H' High accuracy requested. No numerical rank determination based
        !            73: *>        on the rank revealing QR factorization is attempted.
        !            74: *>  = 'E' Same as 'H', and in addition the condition number of column
        !            75: *>        scaled A is estimated and returned in  RWORK(1).
        !            76: *>        N^(-1/4)*RWORK(1) <= ||pinv(A_scaled)||_2 <= N^(1/4)*RWORK(1)
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[in] JOBP
        !            80: *> \verbatim
        !            81: *>  JOBP is CHARACTER*1
        !            82: *>  = 'P' The rows of A are ordered in decreasing order with respect to
        !            83: *>        ||A(i,:)||_\infty. This enhances numerical accuracy at the cost
        !            84: *>        of extra data movement. Recommended for numerical robustness.
        !            85: *>  = 'N' No row pivoting.
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[in] JOBR
        !            89: *> \verbatim
        !            90: *>          JOBR is CHARACTER*1
        !            91: *>          = 'T' After the initial pivoted QR factorization, DGESVD is applied to
        !            92: *>          the transposed R**T of the computed triangular factor R. This involves
        !            93: *>          some extra data movement (matrix transpositions). Useful for
        !            94: *>          experiments, research and development.
        !            95: *>          = 'N' The triangular factor R is given as input to DGESVD. This may be
        !            96: *>          preferred as it involves less data movement.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] JOBU
        !           100: *> \verbatim
        !           101: *>          JOBU is CHARACTER*1
        !           102: *>          = 'A' All M left singular vectors are computed and returned in the
        !           103: *>          matrix U. See the description of U.
        !           104: *>          = 'S' or 'U' N = min(M,N) left singular vectors are computed and returned
        !           105: *>          in the matrix U. See the description of U.
        !           106: *>          = 'R' Numerical rank NUMRANK is determined and only NUMRANK left singular
        !           107: *>          vectors are computed and returned in the matrix U.
        !           108: *>          = 'F' The N left singular vectors are returned in factored form as the
        !           109: *>          product of the Q factor from the initial QR factorization and the
        !           110: *>          N left singular vectors of (R**T , 0)**T. If row pivoting is used,
        !           111: *>          then the necessary information on the row pivoting is stored in
        !           112: *>          IWORK(N+1:N+M-1).
        !           113: *>          = 'N' The left singular vectors are not computed.
        !           114: *> \endverbatim
        !           115: *>
        !           116: *> \param[in] JOBV
        !           117: *> \verbatim
        !           118: *>          JOBV is CHARACTER*1
        !           119: *>          = 'A', 'V' All N right singular vectors are computed and returned in
        !           120: *>          the matrix V.
        !           121: *>          = 'R' Numerical rank NUMRANK is determined and only NUMRANK right singular
        !           122: *>          vectors are computed and returned in the matrix V. This option is
        !           123: *>          allowed only if JOBU = 'R' or JOBU = 'N'; otherwise it is illegal.
        !           124: *>          = 'N' The right singular vectors are not computed.
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[in] M
        !           128: *> \verbatim
        !           129: *>          M is INTEGER
        !           130: *>          The number of rows of the input matrix A.  M >= 0.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in] N
        !           134: *> \verbatim
        !           135: *>          N is INTEGER
        !           136: *>          The number of columns of the input matrix A.  M >= N >= 0.
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[in,out] A
        !           140: *> \verbatim
        !           141: *>          A is DOUBLE PRECISION array of dimensions LDA x N
        !           142: *>          On entry, the input matrix A.
        !           143: *>          On exit, if JOBU .NE. 'N' or JOBV .NE. 'N', the lower triangle of A contains
        !           144: *>          the Householder vectors as stored by DGEQP3. If JOBU = 'F', these Householder
        !           145: *>          vectors together with WORK(1:N) can be used to restore the Q factors from
        !           146: *>          the initial pivoted QR factorization of A. See the description of U.
        !           147: *> \endverbatim
        !           148: *>
        !           149: *> \param[in] LDA
        !           150: *> \verbatim
        !           151: *>          LDA is INTEGER.
        !           152: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !           153: *> \endverbatim
        !           154: *>
        !           155: *> \param[out] S
        !           156: *> \verbatim
        !           157: *>          S is DOUBLE PRECISION array of dimension N.
        !           158: *>          The singular values of A, ordered so that S(i) >= S(i+1).
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[out] U
        !           162: *> \verbatim
        !           163: *>          U is DOUBLE PRECISION array, dimension
        !           164: *>          LDU x M if JOBU = 'A'; see the description of LDU. In this case,
        !           165: *>          on exit, U contains the M left singular vectors.
        !           166: *>          LDU x N if JOBU = 'S', 'U', 'R' ; see the description of LDU. In this
        !           167: *>          case, U contains the leading N or the leading NUMRANK left singular vectors.
        !           168: *>          LDU x N if JOBU = 'F' ; see the description of LDU. In this case U
        !           169: *>          contains N x N orthogonal matrix that can be used to form the left
        !           170: *>          singular vectors.
        !           171: *>          If JOBU = 'N', U is not referenced.
        !           172: *> \endverbatim
        !           173: *>
        !           174: *> \param[in] LDU
        !           175: *> \verbatim
        !           176: *>          LDU is INTEGER.
        !           177: *>          The leading dimension of the array U.
        !           178: *>          If JOBU = 'A', 'S', 'U', 'R',  LDU >= max(1,M).
        !           179: *>          If JOBU = 'F',                 LDU >= max(1,N).
        !           180: *>          Otherwise,                     LDU >= 1.
        !           181: *> \endverbatim
        !           182: *>
        !           183: *> \param[out] V
        !           184: *> \verbatim
        !           185: *>          V is DOUBLE PRECISION array, dimension
        !           186: *>          LDV x N if JOBV = 'A', 'V', 'R' or if JOBA = 'E' .
        !           187: *>          If JOBV = 'A', or 'V',  V contains the N-by-N orthogonal matrix  V**T;
        !           188: *>          If JOBV = 'R', V contains the first NUMRANK rows of V**T (the right
        !           189: *>          singular vectors, stored rowwise, of the NUMRANK largest singular values).
        !           190: *>          If JOBV = 'N' and JOBA = 'E', V is used as a workspace.
        !           191: *>          If JOBV = 'N', and JOBA.NE.'E', V is not referenced.
        !           192: *> \endverbatim
        !           193: *>
        !           194: *> \param[in] LDV
        !           195: *> \verbatim
        !           196: *>          LDV is INTEGER
        !           197: *>          The leading dimension of the array V.
        !           198: *>          If JOBV = 'A', 'V', 'R',  or JOBA = 'E', LDV >= max(1,N).
        !           199: *>          Otherwise,                               LDV >= 1.
        !           200: *> \endverbatim
        !           201: *>
        !           202: *> \param[out] NUMRANK
        !           203: *> \verbatim
        !           204: *>          NUMRANK is INTEGER
        !           205: *>          NUMRANK is the numerical rank first determined after the rank
        !           206: *>          revealing QR factorization, following the strategy specified by the
        !           207: *>          value of JOBA. If JOBV = 'R' and JOBU = 'R', only NUMRANK
        !           208: *>          leading singular values and vectors are then requested in the call
        !           209: *>          of DGESVD. The final value of NUMRANK might be further reduced if
        !           210: *>          some singular values are computed as zeros.
        !           211: *> \endverbatim
        !           212: *>
        !           213: *> \param[out] IWORK
        !           214: *> \verbatim
        !           215: *>          IWORK is INTEGER array, dimension (max(1, LIWORK)).
        !           216: *>          On exit, IWORK(1:N) contains column pivoting permutation of the
        !           217: *>          rank revealing QR factorization.
        !           218: *>          If JOBP = 'P', IWORK(N+1:N+M-1) contains the indices of the sequence
        !           219: *>          of row swaps used in row pivoting. These can be used to restore the
        !           220: *>          left singular vectors in the case JOBU = 'F'.
        !           221: *>
        !           222: *>          If LIWORK, LWORK, or LRWORK = -1, then on exit, if INFO = 0,
        !           223: *>          LIWORK(1) returns the minimal LIWORK.
        !           224: *> \endverbatim
        !           225: *>
        !           226: *> \param[in] LIWORK
        !           227: *> \verbatim
        !           228: *>          LIWORK is INTEGER
        !           229: *>          The dimension of the array IWORK.
        !           230: *>          LIWORK >= N + M - 1,     if JOBP = 'P' and JOBA .NE. 'E';
        !           231: *>          LIWORK >= N              if JOBP = 'N' and JOBA .NE. 'E';
        !           232: *>          LIWORK >= N + M - 1 + N, if JOBP = 'P' and JOBA = 'E';
        !           233: *>          LIWORK >= N + N          if JOBP = 'N' and JOBA = 'E'.
        !           234: *
        !           235: *>          If LIWORK = -1, then a workspace query is assumed; the routine
        !           236: *>          only calculates and returns the optimal and minimal sizes
        !           237: *>          for the WORK, IWORK, and RWORK arrays, and no error
        !           238: *>          message related to LWORK is issued by XERBLA.
        !           239: *> \endverbatim
        !           240: *>
        !           241: *> \param[out] WORK
        !           242: *> \verbatim
        !           243: *>          WORK is DOUBLE PRECISION array, dimension (max(2, LWORK)), used as a workspace.
        !           244: *>          On exit, if, on entry, LWORK.NE.-1, WORK(1:N) contains parameters
        !           245: *>          needed to recover the Q factor from the QR factorization computed by
        !           246: *>          DGEQP3.
        !           247: *>
        !           248: *>          If LIWORK, LWORK, or LRWORK = -1, then on exit, if INFO = 0,
        !           249: *>          WORK(1) returns the optimal LWORK, and
        !           250: *>          WORK(2) returns the minimal LWORK.
        !           251: *> \endverbatim
        !           252: *>
        !           253: *> \param[in,out] LWORK
        !           254: *> \verbatim
        !           255: *>          LWORK is INTEGER
        !           256: *>          The dimension of the array WORK. It is determined as follows:
        !           257: *>          Let  LWQP3 = 3*N+1,  LWCON = 3*N, and let
        !           258: *>          LWORQ = { MAX( N, 1 ),  if JOBU = 'R', 'S', or 'U'
        !           259: *>                  { MAX( M, 1 ),  if JOBU = 'A'
        !           260: *>          LWSVD = MAX( 5*N, 1 )
        !           261: *>          LWLQF = MAX( N/2, 1 ), LWSVD2 = MAX( 5*(N/2), 1 ), LWORLQ = MAX( N, 1 ),
        !           262: *>          LWQRF = MAX( N/2, 1 ), LWORQ2 = MAX( N, 1 )
        !           263: *>          Then the minimal value of LWORK is:
        !           264: *>          = MAX( N + LWQP3, LWSVD )        if only the singular values are needed;
        !           265: *>          = MAX( N + LWQP3, LWCON, LWSVD ) if only the singular values are needed,
        !           266: *>                                   and a scaled condition estimate requested;
        !           267: *>
        !           268: *>          = N + MAX( LWQP3, LWSVD, LWORQ ) if the singular values and the left
        !           269: *>                                   singular vectors are requested;
        !           270: *>          = N + MAX( LWQP3, LWCON, LWSVD, LWORQ ) if the singular values and the left
        !           271: *>                                   singular vectors are requested, and also
        !           272: *>                                   a scaled condition estimate requested;
        !           273: *>
        !           274: *>          = N + MAX( LWQP3, LWSVD )        if the singular values and the right
        !           275: *>                                   singular vectors are requested;
        !           276: *>          = N + MAX( LWQP3, LWCON, LWSVD ) if the singular values and the right
        !           277: *>                                   singular vectors are requested, and also
        !           278: *>                                   a scaled condition etimate requested;
        !           279: *>
        !           280: *>          = N + MAX( LWQP3, LWSVD, LWORQ ) if the full SVD is requested with JOBV = 'R';
        !           281: *>                                   independent of JOBR;
        !           282: *>          = N + MAX( LWQP3, LWCON, LWSVD, LWORQ ) if the full SVD is requested,
        !           283: *>                                   JOBV = 'R' and, also a scaled condition
        !           284: *>                                   estimate requested; independent of JOBR;
        !           285: *>          = MAX( N + MAX( LWQP3, LWSVD, LWORQ ),
        !           286: *>         N + MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, N/2+LWORLQ, LWORQ) ) if the
        !           287: *>                         full SVD is requested with JOBV = 'A' or 'V', and
        !           288: *>                         JOBR ='N'
        !           289: *>          = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWORQ ),
        !           290: *>         N + MAX( LWQP3, LWCON, N/2+LWLQF, N/2+LWSVD2, N/2+LWORLQ, LWORQ ) )
        !           291: *>                         if the full SVD is requested with JOBV = 'A' or 'V', and
        !           292: *>                         JOBR ='N', and also a scaled condition number estimate
        !           293: *>                         requested.
        !           294: *>          = MAX( N + MAX( LWQP3, LWSVD, LWORQ ),
        !           295: *>         N + MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, N/2+LWORQ2, LWORQ ) ) if the
        !           296: *>                         full SVD is requested with JOBV = 'A', 'V', and JOBR ='T'
        !           297: *>          = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWORQ ),
        !           298: *>         N + MAX( LWQP3, LWCON, N/2+LWQRF, N/2+LWSVD2, N/2+LWORQ2, LWORQ ) )
        !           299: *>                         if the full SVD is requested with JOBV = 'A' or 'V', and
        !           300: *>                         JOBR ='T', and also a scaled condition number estimate
        !           301: *>                         requested.
        !           302: *>          Finally, LWORK must be at least two: LWORK = MAX( 2, LWORK ).
        !           303: *>
        !           304: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           305: *>          only calculates and returns the optimal and minimal sizes
        !           306: *>          for the WORK, IWORK, and RWORK arrays, and no error
        !           307: *>          message related to LWORK is issued by XERBLA.
        !           308: *> \endverbatim
        !           309: *>
        !           310: *> \param[out] RWORK
        !           311: *> \verbatim
        !           312: *>          RWORK is DOUBLE PRECISION array, dimension (max(1, LRWORK)).
        !           313: *>          On exit,
        !           314: *>          1. If JOBA = 'E', RWORK(1) contains an estimate of the condition
        !           315: *>          number of column scaled A. If A = C * D where D is diagonal and C
        !           316: *>          has unit columns in the Euclidean norm, then, assuming full column rank,
        !           317: *>          N^(-1/4) * RWORK(1) <= ||pinv(C)||_2 <= N^(1/4) * RWORK(1).
        !           318: *>          Otherwise, RWORK(1) = -1.
        !           319: *>          2. RWORK(2) contains the number of singular values computed as
        !           320: *>          exact zeros in DGESVD applied to the upper triangular or trapeziodal
        !           321: *>          R (from the initial QR factorization). In case of early exit (no call to
        !           322: *>          DGESVD, such as in the case of zero matrix) RWORK(2) = -1.
        !           323: *>
        !           324: *>          If LIWORK, LWORK, or LRWORK = -1, then on exit, if INFO = 0,
        !           325: *>          RWORK(1) returns the minimal LRWORK.
        !           326: *> \endverbatim
        !           327: *>
        !           328: *> \param[in] LRWORK
        !           329: *> \verbatim
        !           330: *>          LRWORK is INTEGER.
        !           331: *>          The dimension of the array RWORK.
        !           332: *>          If JOBP ='P', then LRWORK >= MAX(2, M).
        !           333: *>          Otherwise, LRWORK >= 2
        !           334: *
        !           335: *>          If LRWORK = -1, then a workspace query is assumed; the routine
        !           336: *>          only calculates and returns the optimal and minimal sizes
        !           337: *>          for the WORK, IWORK, and RWORK arrays, and no error
        !           338: *>          message related to LWORK is issued by XERBLA.
        !           339: *> \endverbatim
        !           340: *>
        !           341: *> \param[out] INFO
        !           342: *> \verbatim
        !           343: *>          INFO is INTEGER
        !           344: *>          = 0:  successful exit.
        !           345: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           346: *>          > 0:  if DBDSQR did not converge, INFO specifies how many superdiagonals
        !           347: *>          of an intermediate bidiagonal form B (computed in DGESVD) did not
        !           348: *>          converge to zero.
        !           349: *> \endverbatim
        !           350: *
        !           351: *> \par Further Details:
        !           352: *  ========================
        !           353: *>
        !           354: *> \verbatim
        !           355: *>
        !           356: *>   1. The data movement (matrix transpose) is coded using simple nested
        !           357: *>   DO-loops because BLAS and LAPACK do not provide corresponding subroutines.
        !           358: *>   Those DO-loops are easily identified in this source code - by the CONTINUE
        !           359: *>   statements labeled with 11**. In an optimized version of this code, the
        !           360: *>   nested DO loops should be replaced with calls to an optimized subroutine.
        !           361: *>   2. This code scales A by 1/SQRT(M) if the largest ABS(A(i,j)) could cause
        !           362: *>   column norm overflow. This is the minial precaution and it is left to the
        !           363: *>   SVD routine (CGESVD) to do its own preemptive scaling if potential over-
        !           364: *>   or underflows are detected. To avoid repeated scanning of the array A,
        !           365: *>   an optimal implementation would do all necessary scaling before calling
        !           366: *>   CGESVD and the scaling in CGESVD can be switched off.
        !           367: *>   3. Other comments related to code optimization are given in comments in the
        !           368: *>   code, enlosed in [[double brackets]].
        !           369: *> \endverbatim
        !           370: *
        !           371: *> \par Bugs, examples and comments
        !           372: *  ===========================
        !           373: *
        !           374: *> \verbatim
        !           375: *>  Please report all bugs and send interesting examples and/or comments to
        !           376: *>  drmac@math.hr. Thank you.
        !           377: *> \endverbatim
        !           378: *
        !           379: *> \par References
        !           380: *  ===============
        !           381: *
        !           382: *> \verbatim
        !           383: *>  [1] Zlatko Drmac, Algorithm 977: A QR-Preconditioned QR SVD Method for
        !           384: *>      Computing the SVD with High Accuracy. ACM Trans. Math. Softw.
        !           385: *>      44(1): 11:1-11:30 (2017)
        !           386: *>
        !           387: *>  SIGMA library, xGESVDQ section updated February 2016.
        !           388: *>  Developed and coded by Zlatko Drmac, Department of Mathematics
        !           389: *>  University of Zagreb, Croatia, drmac@math.hr
        !           390: *> \endverbatim
        !           391: *
        !           392: *
        !           393: *> \par Contributors:
        !           394: *  ==================
        !           395: *>
        !           396: *> \verbatim
        !           397: *> Developed and coded by Zlatko Drmac, Department of Mathematics
        !           398: *>  University of Zagreb, Croatia, drmac@math.hr
        !           399: *> \endverbatim
        !           400: *
        !           401: *  Authors:
        !           402: *  ========
        !           403: *
        !           404: *> \author Univ. of Tennessee
        !           405: *> \author Univ. of California Berkeley
        !           406: *> \author Univ. of Colorado Denver
        !           407: *> \author NAG Ltd.
        !           408: *
        !           409: *> \date November 2018
        !           410: *
        !           411: *> \ingroup doubleGEsing
        !           412: *
        !           413: *  =====================================================================
        !           414:       SUBROUTINE DGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
        !           415:      $                    S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK,
        !           416:      $                    WORK, LWORK, RWORK, LRWORK, INFO )
        !           417: *     .. Scalar Arguments ..
        !           418:       IMPLICIT    NONE
        !           419:       CHARACTER   JOBA, JOBP, JOBR, JOBU, JOBV
        !           420:       INTEGER     M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LWORK, LRWORK,
        !           421:      $            INFO
        !           422: *     ..
        !           423: *     .. Array Arguments ..
        !           424:       DOUBLE PRECISION A( LDA, * ), U( LDU, * ), V( LDV, * ), WORK( * )
        !           425:       DOUBLE PRECISION S( * ), RWORK( * )
        !           426:       INTEGER          IWORK( * )
        !           427: *
        !           428: *  =====================================================================
        !           429: *
        !           430: *     .. Parameters ..
        !           431:       DOUBLE PRECISION ZERO,         ONE
        !           432:       PARAMETER      ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           433: *     .. Local Scalars ..
        !           434:       INTEGER     IERR, IWOFF, NR, N1, OPTRATIO, p, q
        !           435:       INTEGER     LWCON, LWQP3, LWRK_DGELQF, LWRK_DGESVD, LWRK_DGESVD2,
        !           436:      $            LWRK_DGEQP3,  LWRK_DGEQRF, LWRK_DORMLQ, LWRK_DORMQR,
        !           437:      $            LWRK_DORMQR2, LWLQF, LWQRF, LWSVD, LWSVD2, LWORQ,
        !           438:      $            LWORQ2, LWORLQ, MINWRK, MINWRK2, OPTWRK, OPTWRK2,
        !           439:      $            IMINWRK, RMINWRK
        !           440:       LOGICAL     ACCLA,  ACCLM, ACCLH, ASCALED, CONDA, DNTWU,  DNTWV,
        !           441:      $            LQUERY, LSVC0, LSVEC, ROWPRM,  RSVEC, RTRANS, WNTUA,
        !           442:      $            WNTUF,  WNTUR, WNTUS, WNTVA,   WNTVR
        !           443:       DOUBLE PRECISION BIG, EPSLN, RTMP, SCONDA, SFMIN
        !           444: *     .. Local Arrays
        !           445:       DOUBLE PRECISION RDUMMY(1)
        !           446: *     ..
        !           447: *     .. External Subroutines (BLAS, LAPACK)
        !           448:       EXTERNAL    DGELQF, DGEQP3, DGEQRF, DGESVD, DLACPY, DLAPMT,
        !           449:      $            DLASCL, DLASET, DLASWP, DSCAL,  DPOCON, DORMLQ,
        !           450:      $            DORMQR, XERBLA
        !           451: *     ..
        !           452: *     .. External Functions (BLAS, LAPACK)
        !           453:       LOGICAL    LSAME
        !           454:       INTEGER    IDAMAX
        !           455:       DOUBLE PRECISION  DLANGE, DNRM2, DLAMCH
        !           456:       EXTERNAL    DLANGE, LSAME, IDAMAX, DNRM2, DLAMCH
        !           457: *     ..
        !           458: *     .. Intrinsic Functions ..
        !           459: *
        !           460:       INTRINSIC   ABS, MAX, MIN, DBLE, SQRT
        !           461: *
        !           462: *     Test the input arguments
        !           463: *
        !           464:       WNTUS  = LSAME( JOBU, 'S' ) .OR. LSAME( JOBU, 'U' )
        !           465:       WNTUR  = LSAME( JOBU, 'R' )
        !           466:       WNTUA  = LSAME( JOBU, 'A' )
        !           467:       WNTUF  = LSAME( JOBU, 'F' )
        !           468:       LSVC0  = WNTUS .OR. WNTUR .OR. WNTUA
        !           469:       LSVEC  = LSVC0 .OR. WNTUF
        !           470:       DNTWU  = LSAME( JOBU, 'N' )
        !           471: *
        !           472:       WNTVR  = LSAME( JOBV, 'R' )
        !           473:       WNTVA  = LSAME( JOBV, 'A' ) .OR. LSAME( JOBV, 'V' )
        !           474:       RSVEC  = WNTVR .OR. WNTVA
        !           475:       DNTWV  = LSAME( JOBV, 'N' )
        !           476: *
        !           477:       ACCLA  = LSAME( JOBA, 'A' )
        !           478:       ACCLM  = LSAME( JOBA, 'M' )
        !           479:       CONDA  = LSAME( JOBA, 'E' )
        !           480:       ACCLH  = LSAME( JOBA, 'H' ) .OR. CONDA
        !           481: *
        !           482:       ROWPRM = LSAME( JOBP, 'P' )
        !           483:       RTRANS = LSAME( JOBR, 'T' )
        !           484: *
        !           485:       IF ( ROWPRM ) THEN
        !           486:          IF ( CONDA ) THEN
        !           487:             IMINWRK = MAX( 1, N + M - 1 + N )
        !           488:          ELSE
        !           489:             IMINWRK = MAX( 1, N + M - 1 )
        !           490:          END IF
        !           491:          RMINWRK = MAX( 2, M )
        !           492:       ELSE
        !           493:          IF ( CONDA ) THEN
        !           494:             IMINWRK = MAX( 1, N + N )
        !           495:          ELSE
        !           496:             IMINWRK = MAX( 1, N )
        !           497:          END IF
        !           498:          RMINWRK = 2
        !           499:       END IF
        !           500:       LQUERY = (LIWORK .EQ. -1 .OR. LWORK .EQ. -1 .OR. LRWORK .EQ. -1)
        !           501:       INFO  = 0
        !           502:       IF ( .NOT. ( ACCLA .OR. ACCLM .OR. ACCLH ) ) THEN
        !           503:          INFO = -1
        !           504:       ELSE IF ( .NOT.( ROWPRM .OR. LSAME( JOBP, 'N' ) ) ) THEN
        !           505:           INFO = -2
        !           506:       ELSE IF ( .NOT.( RTRANS .OR. LSAME( JOBR, 'N' ) ) ) THEN
        !           507:           INFO = -3
        !           508:       ELSE IF ( .NOT.( LSVEC .OR. DNTWU ) ) THEN
        !           509:          INFO = -4
        !           510:       ELSE IF ( WNTUR .AND. WNTVA ) THEN
        !           511:          INFO = -5
        !           512:       ELSE IF ( .NOT.( RSVEC .OR. DNTWV )) THEN
        !           513:          INFO = -5
        !           514:       ELSE IF ( M.LT.0 ) THEN
        !           515:          INFO = -6
        !           516:       ELSE IF ( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
        !           517:          INFO = -7
        !           518:       ELSE IF ( LDA.LT.MAX( 1, M ) ) THEN
        !           519:          INFO = -9
        !           520:       ELSE IF ( LDU.LT.1 .OR. ( LSVC0 .AND. LDU.LT.M ) .OR.
        !           521:      $       ( WNTUF .AND. LDU.LT.N ) ) THEN
        !           522:          INFO = -12
        !           523:       ELSE IF ( LDV.LT.1 .OR. ( RSVEC .AND. LDV.LT.N ) .OR.
        !           524:      $          ( CONDA .AND. LDV.LT.N ) ) THEN
        !           525:          INFO = -14
        !           526:       ELSE IF ( LIWORK .LT. IMINWRK .AND. .NOT. LQUERY ) THEN
        !           527:          INFO = -17
        !           528:       END IF
        !           529: *
        !           530: *
        !           531:       IF ( INFO .EQ. 0 ) THEN
        !           532: *        .. compute the minimal and the optimal workspace lengths
        !           533: *        [[The expressions for computing the minimal and the optimal
        !           534: *        values of LWORK are written with a lot of redundancy and
        !           535: *        can be simplified. However, this detailed form is easier for
        !           536: *        maintenance and modifications of the code.]]
        !           537: *
        !           538: *        .. minimal workspace length for DGEQP3 of an M x N matrix
        !           539:          LWQP3 = 3 * N + 1
        !           540: *        .. minimal workspace length for DORMQR to build left singular vectors
        !           541:          IF ( WNTUS .OR. WNTUR ) THEN
        !           542:              LWORQ  = MAX( N  , 1 )
        !           543:          ELSE IF ( WNTUA ) THEN
        !           544:              LWORQ = MAX( M , 1 )
        !           545:          END IF
        !           546: *        .. minimal workspace length for DPOCON of an N x N matrix
        !           547:          LWCON = 3 * N
        !           548: *        .. DGESVD of an N x N matrix
        !           549:          LWSVD = MAX( 5 * N, 1 )
        !           550:          IF ( LQUERY ) THEN
        !           551:              CALL DGEQP3( M, N, A, LDA, IWORK, RDUMMY, RDUMMY, -1,
        !           552:      $           IERR )
        !           553:              LWRK_DGEQP3 = INT( RDUMMY(1) )
        !           554:              IF ( WNTUS .OR. WNTUR ) THEN
        !           555:                  CALL DORMQR( 'L', 'N', M, N, N, A, LDA, RDUMMY, U,
        !           556:      $                LDU, RDUMMY, -1, IERR )
        !           557:                  LWRK_DORMQR = INT( RDUMMY(1) )
        !           558:              ELSE IF ( WNTUA ) THEN
        !           559:                  CALL DORMQR( 'L', 'N', M, M, N, A, LDA, RDUMMY, U,
        !           560:      $                LDU, RDUMMY, -1, IERR )
        !           561:                  LWRK_DORMQR = INT( RDUMMY(1) )
        !           562:              ELSE
        !           563:                  LWRK_DORMQR = 0
        !           564:              END IF
        !           565:          END IF
        !           566:          MINWRK = 2
        !           567:          OPTWRK = 2
        !           568:          IF ( .NOT. (LSVEC .OR. RSVEC )) THEN
        !           569: *            .. minimal and optimal sizes of the workspace if
        !           570: *            only the singular values are requested
        !           571:              IF ( CONDA ) THEN
        !           572:                 MINWRK = MAX( N+LWQP3, LWCON, LWSVD )
        !           573:              ELSE
        !           574:                 MINWRK = MAX( N+LWQP3, LWSVD )
        !           575:              END IF
        !           576:              IF ( LQUERY ) THEN
        !           577:                  CALL DGESVD( 'N', 'N', N, N, A, LDA, S, U, LDU,
        !           578:      $                V, LDV, RDUMMY, -1, IERR )
        !           579:                  LWRK_DGESVD = INT( RDUMMY(1) )
        !           580:                  IF ( CONDA ) THEN
        !           581:                     OPTWRK = MAX( N+LWRK_DGEQP3, N+LWCON, LWRK_DGESVD )
        !           582:                  ELSE
        !           583:                     OPTWRK = MAX( N+LWRK_DGEQP3, LWRK_DGESVD )
        !           584:                  END IF
        !           585:              END IF
        !           586:          ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN
        !           587: *            .. minimal and optimal sizes of the workspace if the
        !           588: *            singular values and the left singular vectors are requested
        !           589:              IF ( CONDA ) THEN
        !           590:                  MINWRK = N + MAX( LWQP3, LWCON, LWSVD, LWORQ )
        !           591:              ELSE
        !           592:                  MINWRK = N + MAX( LWQP3, LWSVD, LWORQ )
        !           593:              END IF
        !           594:              IF ( LQUERY ) THEN
        !           595:                 IF ( RTRANS ) THEN
        !           596:                    CALL DGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU,
        !           597:      $                  V, LDV, RDUMMY, -1, IERR )
        !           598:                 ELSE
        !           599:                    CALL DGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU,
        !           600:      $                  V, LDV, RDUMMY, -1, IERR )
        !           601:                 END IF
        !           602:                 LWRK_DGESVD = INT( RDUMMY(1) )
        !           603:                 IF ( CONDA ) THEN
        !           604:                     OPTWRK = N + MAX( LWRK_DGEQP3, LWCON, LWRK_DGESVD,
        !           605:      $                               LWRK_DORMQR )
        !           606:                 ELSE
        !           607:                     OPTWRK = N + MAX( LWRK_DGEQP3, LWRK_DGESVD,
        !           608:      $                               LWRK_DORMQR )
        !           609:                 END IF
        !           610:              END IF
        !           611:          ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
        !           612: *            .. minimal and optimal sizes of the workspace if the
        !           613: *            singular values and the right singular vectors are requested
        !           614:              IF ( CONDA ) THEN
        !           615:                  MINWRK = N + MAX( LWQP3, LWCON, LWSVD )
        !           616:              ELSE
        !           617:                  MINWRK = N + MAX( LWQP3, LWSVD )
        !           618:              END IF
        !           619:              IF ( LQUERY ) THEN
        !           620:                  IF ( RTRANS ) THEN
        !           621:                      CALL DGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU,
        !           622:      $                    V, LDV, RDUMMY, -1, IERR )
        !           623:                  ELSE
        !           624:                      CALL DGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU,
        !           625:      $                    V, LDV, RDUMMY, -1, IERR )
        !           626:                  END IF
        !           627:                  LWRK_DGESVD = INT( RDUMMY(1) )
        !           628:                  IF ( CONDA ) THEN
        !           629:                      OPTWRK = N + MAX( LWRK_DGEQP3, LWCON, LWRK_DGESVD )
        !           630:                  ELSE
        !           631:                      OPTWRK = N + MAX( LWRK_DGEQP3, LWRK_DGESVD )
        !           632:                  END IF
        !           633:              END IF
        !           634:          ELSE
        !           635: *            .. minimal and optimal sizes of the workspace if the
        !           636: *            full SVD is requested
        !           637:              IF ( RTRANS ) THEN
        !           638:                  MINWRK = MAX( LWQP3, LWSVD, LWORQ )
        !           639:                  IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON )
        !           640:                  MINWRK = MINWRK + N
        !           641:                  IF ( WNTVA ) THEN
        !           642: *                   .. minimal workspace length for N x N/2 DGEQRF
        !           643:                     LWQRF  = MAX( N/2, 1 )
        !           644: *                   .. minimal workspace lengt for N/2 x N/2 DGESVD
        !           645:                     LWSVD2 = MAX( 5 * (N/2), 1 )
        !           646:                     LWORQ2 = MAX( N, 1 )
        !           647:                     MINWRK2 = MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2,
        !           648:      $                        N/2+LWORQ2, LWORQ )
        !           649:                     IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON )
        !           650:                     MINWRK2 = N + MINWRK2
        !           651:                     MINWRK = MAX( MINWRK, MINWRK2 )
        !           652:                  END IF
        !           653:              ELSE
        !           654:                  MINWRK = MAX( LWQP3, LWSVD, LWORQ )
        !           655:                  IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON )
        !           656:                  MINWRK = MINWRK + N
        !           657:                  IF ( WNTVA ) THEN
        !           658: *                   .. minimal workspace length for N/2 x N DGELQF
        !           659:                     LWLQF  = MAX( N/2, 1 )
        !           660:                     LWSVD2 = MAX( 5 * (N/2), 1 )
        !           661:                     LWORLQ = MAX( N , 1 )
        !           662:                     MINWRK2 = MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2,
        !           663:      $                        N/2+LWORLQ, LWORQ )
        !           664:                     IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON )
        !           665:                     MINWRK2 = N + MINWRK2
        !           666:                     MINWRK = MAX( MINWRK, MINWRK2 )
        !           667:                  END IF
        !           668:              END IF
        !           669:              IF ( LQUERY ) THEN
        !           670:                 IF ( RTRANS ) THEN
        !           671:                    CALL DGESVD( 'O', 'A', N, N, A, LDA, S, U, LDU,
        !           672:      $                  V, LDV, RDUMMY, -1, IERR )
        !           673:                    LWRK_DGESVD = INT( RDUMMY(1) )
        !           674:                    OPTWRK = MAX(LWRK_DGEQP3,LWRK_DGESVD,LWRK_DORMQR)
        !           675:                    IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON )
        !           676:                    OPTWRK = N + OPTWRK
        !           677:                    IF ( WNTVA ) THEN
        !           678:                        CALL DGEQRF(N,N/2,U,LDU,RDUMMY,RDUMMY,-1,IERR)
        !           679:                        LWRK_DGEQRF = INT( RDUMMY(1) )
        !           680:                        CALL DGESVD( 'S', 'O', N/2,N/2, V,LDV, S, U,LDU,
        !           681:      $                      V, LDV, RDUMMY, -1, IERR )
        !           682:                        LWRK_DGESVD2 = INT( RDUMMY(1) )
        !           683:                        CALL DORMQR( 'R', 'C', N, N, N/2, U, LDU, RDUMMY,
        !           684:      $                      V, LDV, RDUMMY, -1, IERR )
        !           685:                        LWRK_DORMQR2 = INT( RDUMMY(1) )
        !           686:                        OPTWRK2 = MAX( LWRK_DGEQP3, N/2+LWRK_DGEQRF,
        !           687:      $                           N/2+LWRK_DGESVD2, N/2+LWRK_DORMQR2 )
        !           688:                        IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON )
        !           689:                        OPTWRK2 = N + OPTWRK2
        !           690:                        OPTWRK = MAX( OPTWRK, OPTWRK2 )
        !           691:                    END IF
        !           692:                 ELSE
        !           693:                    CALL DGESVD( 'S', 'O', N, N, A, LDA, S, U, LDU,
        !           694:      $                  V, LDV, RDUMMY, -1, IERR )
        !           695:                    LWRK_DGESVD = INT( RDUMMY(1) )
        !           696:                    OPTWRK = MAX(LWRK_DGEQP3,LWRK_DGESVD,LWRK_DORMQR)
        !           697:                    IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON )
        !           698:                    OPTWRK = N + OPTWRK
        !           699:                    IF ( WNTVA ) THEN
        !           700:                       CALL DGELQF(N/2,N,U,LDU,RDUMMY,RDUMMY,-1,IERR)
        !           701:                       LWRK_DGELQF = INT( RDUMMY(1) )
        !           702:                       CALL DGESVD( 'S','O', N/2,N/2, V, LDV, S, U, LDU,
        !           703:      $                     V, LDV, RDUMMY, -1, IERR )
        !           704:                       LWRK_DGESVD2 = INT( RDUMMY(1) )
        !           705:                       CALL DORMLQ( 'R', 'N', N, N, N/2, U, LDU, RDUMMY,
        !           706:      $                     V, LDV, RDUMMY,-1,IERR )
        !           707:                       LWRK_DORMLQ = INT( RDUMMY(1) )
        !           708:                       OPTWRK2 = MAX( LWRK_DGEQP3, N/2+LWRK_DGELQF,
        !           709:      $                           N/2+LWRK_DGESVD2, N/2+LWRK_DORMLQ )
        !           710:                        IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON )
        !           711:                        OPTWRK2 = N + OPTWRK2
        !           712:                        OPTWRK = MAX( OPTWRK, OPTWRK2 )
        !           713:                    END IF
        !           714:                 END IF
        !           715:              END IF
        !           716:          END IF
        !           717: *
        !           718:          MINWRK = MAX( 2, MINWRK )
        !           719:          OPTWRK = MAX( 2, OPTWRK )
        !           720:          IF ( LWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = -19
        !           721: *
        !           722:       END IF
        !           723: *
        !           724:       IF (INFO .EQ. 0 .AND. LRWORK .LT. RMINWRK .AND. .NOT. LQUERY) THEN
        !           725:          INFO = -21
        !           726:       END IF
        !           727:       IF( INFO.NE.0 ) THEN
        !           728:          CALL XERBLA( 'DGESVDQ', -INFO )
        !           729:          RETURN
        !           730:       ELSE IF ( LQUERY ) THEN
        !           731: *
        !           732: *     Return optimal workspace
        !           733: *
        !           734:           IWORK(1) = IMINWRK
        !           735:           WORK(1) = OPTWRK
        !           736:           WORK(2) = MINWRK
        !           737:           RWORK(1) = RMINWRK
        !           738:           RETURN
        !           739:       END IF
        !           740: *
        !           741: *     Quick return if the matrix is void.
        !           742: *
        !           743:       IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) THEN
        !           744: *     .. all output is void.
        !           745:          RETURN
        !           746:       END IF
        !           747: *
        !           748:       BIG = DLAMCH('O')
        !           749:       ASCALED = .FALSE.
        !           750:       IWOFF = 1
        !           751:       IF ( ROWPRM ) THEN
        !           752:             IWOFF = M
        !           753: *           .. reordering the rows in decreasing sequence in the
        !           754: *           ell-infinity norm - this enhances numerical robustness in
        !           755: *           the case of differently scaled rows.
        !           756:             DO 1904 p = 1, M
        !           757: *               RWORK(p) = ABS( A(p,ICAMAX(N,A(p,1),LDA)) )
        !           758: *               [[DLANGE will return NaN if an entry of the p-th row is Nan]]
        !           759:                 RWORK(p) = DLANGE( 'M', 1, N, A(p,1), LDA, RDUMMY )
        !           760: *               .. check for NaN's and Inf's
        !           761:                 IF ( ( RWORK(p) .NE. RWORK(p) ) .OR.
        !           762:      $               ( (RWORK(p)*ZERO) .NE. ZERO ) ) THEN
        !           763:                     INFO = -8
        !           764:                     CALL XERBLA( 'DGESVDQ', -INFO )
        !           765:                     RETURN
        !           766:                 END IF
        !           767:  1904       CONTINUE
        !           768:             DO 1952 p = 1, M - 1
        !           769:             q = IDAMAX( M-p+1, RWORK(p), 1 ) + p - 1
        !           770:             IWORK(N+p) = q
        !           771:             IF ( p .NE. q ) THEN
        !           772:                RTMP     = RWORK(p)
        !           773:                RWORK(p) = RWORK(q)
        !           774:                RWORK(q) = RTMP
        !           775:             END IF
        !           776:  1952       CONTINUE
        !           777: *
        !           778:             IF ( RWORK(1) .EQ. ZERO ) THEN
        !           779: *              Quick return: A is the M x N zero matrix.
        !           780:                NUMRANK = 0
        !           781:                CALL DLASET( 'G', N, 1, ZERO, ZERO, S, N )
        !           782:                IF ( WNTUS ) CALL DLASET('G', M, N, ZERO, ONE, U, LDU)
        !           783:                IF ( WNTUA ) CALL DLASET('G', M, M, ZERO, ONE, U, LDU)
        !           784:                IF ( WNTVA ) CALL DLASET('G', N, N, ZERO, ONE, V, LDV)
        !           785:                IF ( WNTUF ) THEN
        !           786:                    CALL DLASET( 'G', N, 1, ZERO, ZERO, WORK, N )
        !           787:                    CALL DLASET( 'G', M, N, ZERO,  ONE, U, LDU )
        !           788:                END IF
        !           789:                DO 5001 p = 1, N
        !           790:                    IWORK(p) = p
        !           791:  5001          CONTINUE
        !           792:                IF ( ROWPRM ) THEN
        !           793:                    DO 5002 p = N + 1, N + M - 1
        !           794:                        IWORK(p) = p - N
        !           795:  5002              CONTINUE
        !           796:                END IF
        !           797:                IF ( CONDA ) RWORK(1) = -1
        !           798:                RWORK(2) = -1
        !           799:                RETURN
        !           800:             END IF
        !           801: *
        !           802:             IF ( RWORK(1) .GT. BIG / SQRT(DBLE(M)) ) THEN
        !           803: *               .. to prevent overflow in the QR factorization, scale the
        !           804: *               matrix by 1/sqrt(M) if too large entry detected
        !           805:                 CALL DLASCL('G',0,0,SQRT(DBLE(M)),ONE, M,N, A,LDA, IERR)
        !           806:                 ASCALED = .TRUE.
        !           807:             END IF
        !           808:             CALL DLASWP( N, A, LDA, 1, M-1, IWORK(N+1), 1 )
        !           809:       END IF
        !           810: *
        !           811: *    .. At this stage, preemptive scaling is done only to avoid column
        !           812: *    norms overflows during the QR factorization. The SVD procedure should
        !           813: *    have its own scaling to save the singular values from overflows and
        !           814: *    underflows. That depends on the SVD procedure.
        !           815: *
        !           816:       IF ( .NOT.ROWPRM ) THEN
        !           817:           RTMP = DLANGE( 'M', M, N, A, LDA, RDUMMY )
        !           818:           IF ( ( RTMP .NE. RTMP ) .OR.
        !           819:      $         ( (RTMP*ZERO) .NE. ZERO ) ) THEN
        !           820:                INFO = -8
        !           821:                CALL XERBLA( 'DGESVDQ', -INFO )
        !           822:                RETURN
        !           823:           END IF
        !           824:           IF ( RTMP .GT. BIG / SQRT(DBLE(M)) ) THEN
        !           825: *             .. to prevent overflow in the QR factorization, scale the
        !           826: *             matrix by 1/sqrt(M) if too large entry detected
        !           827:               CALL DLASCL('G',0,0, SQRT(DBLE(M)),ONE, M,N, A,LDA, IERR)
        !           828:               ASCALED = .TRUE.
        !           829:           END IF
        !           830:       END IF
        !           831: *
        !           832: *     .. QR factorization with column pivoting
        !           833: *
        !           834: *     A * P = Q * [ R ]
        !           835: *                 [ 0 ]
        !           836: *
        !           837:       DO 1963 p = 1, N
        !           838: *        .. all columns are free columns
        !           839:          IWORK(p) = 0
        !           840:  1963 CONTINUE
        !           841:       CALL DGEQP3( M, N, A, LDA, IWORK, WORK, WORK(N+1), LWORK-N,
        !           842:      $      IERR )
        !           843: *
        !           844: *    If the user requested accuracy level allows truncation in the
        !           845: *    computed upper triangular factor, the matrix R is examined and,
        !           846: *    if possible, replaced with its leading upper trapezoidal part.
        !           847: *
        !           848:       EPSLN = DLAMCH('E')
        !           849:       SFMIN = DLAMCH('S')
        !           850: *     SMALL = SFMIN / EPSLN
        !           851:       NR = N
        !           852: *
        !           853:       IF ( ACCLA ) THEN
        !           854: *
        !           855: *        Standard absolute error bound suffices. All sigma_i with
        !           856: *        sigma_i < N*EPS*||A||_F are flushed to zero. This is an
        !           857: *        aggressive enforcement of lower numerical rank by introducing a
        !           858: *        backward error of the order of N*EPS*||A||_F.
        !           859:          NR = 1
        !           860:          RTMP = SQRT(DBLE(N))*EPSLN
        !           861:          DO 3001 p = 2, N
        !           862:             IF ( ABS(A(p,p)) .LT. (RTMP*ABS(A(1,1))) ) GO TO 3002
        !           863:                NR = NR + 1
        !           864:  3001    CONTINUE
        !           865:  3002    CONTINUE
        !           866: *
        !           867:       ELSEIF ( ACCLM ) THEN
        !           868: *        .. similarly as above, only slightly more gentle (less aggressive).
        !           869: *        Sudden drop on the diagonal of R is used as the criterion for being
        !           870: *        close-to-rank-deficient. The threshold is set to EPSLN=DLAMCH('E').
        !           871: *        [[This can be made more flexible by replacing this hard-coded value
        !           872: *        with a user specified threshold.]] Also, the values that underflow
        !           873: *        will be truncated.
        !           874:          NR = 1
        !           875:          DO 3401 p = 2, N
        !           876:             IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
        !           877:      $           ( ABS(A(p,p)) .LT. SFMIN ) ) GO TO 3402
        !           878:             NR = NR + 1
        !           879:  3401    CONTINUE
        !           880:  3402    CONTINUE
        !           881: *
        !           882:       ELSE
        !           883: *        .. RRQR not authorized to determine numerical rank except in the
        !           884: *        obvious case of zero pivots.
        !           885: *        .. inspect R for exact zeros on the diagonal;
        !           886: *        R(i,i)=0 => R(i:N,i:N)=0.
        !           887:          NR = 1
        !           888:          DO 3501 p = 2, N
        !           889:             IF ( ABS(A(p,p)) .EQ. ZERO ) GO TO 3502
        !           890:             NR = NR + 1
        !           891:  3501    CONTINUE
        !           892:  3502    CONTINUE
        !           893: *
        !           894:          IF ( CONDA ) THEN
        !           895: *           Estimate the scaled condition number of A. Use the fact that it is
        !           896: *           the same as the scaled condition number of R.
        !           897: *              .. V is used as workspace
        !           898:                CALL DLACPY( 'U', N, N, A, LDA, V, LDV )
        !           899: *              Only the leading NR x NR submatrix of the triangular factor
        !           900: *              is considered. Only if NR=N will this give a reliable error
        !           901: *              bound. However, even for NR < N, this can be used on an
        !           902: *              expert level and obtain useful information in the sense of
        !           903: *              perturbation theory.
        !           904:                DO 3053 p = 1, NR
        !           905:                   RTMP = DNRM2( p, V(1,p), 1 )
        !           906:                   CALL DSCAL( p, ONE/RTMP, V(1,p), 1 )
        !           907:  3053          CONTINUE
        !           908:                IF ( .NOT. ( LSVEC .OR. RSVEC ) ) THEN
        !           909:                    CALL DPOCON( 'U', NR, V, LDV, ONE, RTMP,
        !           910:      $                  WORK, IWORK(N+IWOFF), IERR )
        !           911:                ELSE
        !           912:                    CALL DPOCON( 'U', NR, V, LDV, ONE, RTMP,
        !           913:      $                  WORK(N+1), IWORK(N+IWOFF), IERR )
        !           914:                END IF
        !           915:                SCONDA = ONE / SQRT(RTMP)
        !           916: *           For NR=N, SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1),
        !           917: *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
        !           918: *           See the reference [1] for more details.
        !           919:          END IF
        !           920: *
        !           921:       ENDIF
        !           922: *
        !           923:       IF ( WNTUR ) THEN
        !           924:           N1 = NR
        !           925:       ELSE IF ( WNTUS .OR. WNTUF) THEN
        !           926:           N1 = N
        !           927:       ELSE IF ( WNTUA ) THEN
        !           928:           N1 = M
        !           929:       END IF
        !           930: *
        !           931:       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
        !           932: *.......................................................................
        !           933: *        .. only the singular values are requested
        !           934: *.......................................................................
        !           935:          IF ( RTRANS ) THEN
        !           936: *
        !           937: *         .. compute the singular values of R**T = [A](1:NR,1:N)**T
        !           938: *           .. set the lower triangle of [A] to [A](1:NR,1:N)**T and
        !           939: *           the upper triangle of [A] to zero.
        !           940:             DO 1146 p = 1, MIN( N, NR )
        !           941:                DO 1147 q = p + 1, N
        !           942:                   A(q,p) = A(p,q)
        !           943:                   IF ( q .LE. NR ) A(p,q) = ZERO
        !           944:  1147          CONTINUE
        !           945:  1146       CONTINUE
        !           946: *
        !           947:             CALL DGESVD( 'N', 'N', N, NR, A, LDA, S, U, LDU,
        !           948:      $           V, LDV, WORK, LWORK, INFO )
        !           949: *
        !           950:          ELSE
        !           951: *
        !           952: *           .. compute the singular values of R = [A](1:NR,1:N)
        !           953: *
        !           954:             IF ( NR .GT. 1 )
        !           955:      $          CALL DLASET( 'L', NR-1,NR-1, ZERO,ZERO, A(2,1), LDA )
        !           956:             CALL DGESVD( 'N', 'N', NR, N, A, LDA, S, U, LDU,
        !           957:      $           V, LDV, WORK, LWORK, INFO )
        !           958: *
        !           959:          END IF
        !           960: *
        !           961:       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC) ) THEN
        !           962: *.......................................................................
        !           963: *       .. the singular values and the left singular vectors requested
        !           964: *.......................................................................""""""""
        !           965:          IF ( RTRANS ) THEN
        !           966: *            .. apply DGESVD to R**T
        !           967: *            .. copy R**T into [U] and overwrite [U] with the right singular
        !           968: *            vectors of R
        !           969:             DO 1192 p = 1, NR
        !           970:                DO 1193 q = p, N
        !           971:                   U(q,p) = A(p,q)
        !           972:  1193          CONTINUE
        !           973:  1192       CONTINUE
        !           974:             IF ( NR .GT. 1 )
        !           975:      $          CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, U(1,2), LDU )
        !           976: *           .. the left singular vectors not computed, the NR right singular
        !           977: *           vectors overwrite [U](1:NR,1:NR) as transposed. These
        !           978: *           will be pre-multiplied by Q to build the left singular vectors of A.
        !           979:                CALL DGESVD( 'N', 'O', N, NR, U, LDU, S, U, LDU,
        !           980:      $              U, LDU, WORK(N+1), LWORK-N, INFO )
        !           981: *
        !           982:                DO 1119 p = 1, NR
        !           983:                    DO 1120 q = p + 1, NR
        !           984:                       RTMP   = U(q,p)
        !           985:                       U(q,p) = U(p,q)
        !           986:                       U(p,q) = RTMP
        !           987:  1120              CONTINUE
        !           988:  1119          CONTINUE
        !           989: *
        !           990:          ELSE
        !           991: *            .. apply DGESVD to R
        !           992: *            .. copy R into [U] and overwrite [U] with the left singular vectors
        !           993:              CALL DLACPY( 'U', NR, N, A, LDA, U, LDU )
        !           994:              IF ( NR .GT. 1 )
        !           995:      $         CALL DLASET( 'L', NR-1, NR-1, ZERO, ZERO, U(2,1), LDU )
        !           996: *            .. the right singular vectors not computed, the NR left singular
        !           997: *            vectors overwrite [U](1:NR,1:NR)
        !           998:                 CALL DGESVD( 'O', 'N', NR, N, U, LDU, S, U, LDU,
        !           999:      $               V, LDV, WORK(N+1), LWORK-N, INFO )
        !          1000: *               .. now [U](1:NR,1:NR) contains the NR left singular vectors of
        !          1001: *               R. These will be pre-multiplied by Q to build the left singular
        !          1002: *               vectors of A.
        !          1003:          END IF
        !          1004: *
        !          1005: *           .. assemble the left singular vector matrix U of dimensions
        !          1006: *              (M x NR) or (M x N) or (M x M).
        !          1007:          IF ( ( NR .LT. M ) .AND. ( .NOT.WNTUF ) ) THEN
        !          1008:              CALL DLASET('A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU)
        !          1009:              IF ( NR .LT. N1 ) THEN
        !          1010:                 CALL DLASET( 'A',NR,N1-NR,ZERO,ZERO,U(1,NR+1), LDU )
        !          1011:                 CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,
        !          1012:      $               U(NR+1,NR+1), LDU )
        !          1013:              END IF
        !          1014:          END IF
        !          1015: *
        !          1016: *           The Q matrix from the first QRF is built into the left singular
        !          1017: *           vectors matrix U.
        !          1018: *
        !          1019:          IF ( .NOT.WNTUF )
        !          1020:      $       CALL DORMQR( 'L', 'N', M, N1, N, A, LDA, WORK, U,
        !          1021:      $            LDU, WORK(N+1), LWORK-N, IERR )
        !          1022:          IF ( ROWPRM .AND. .NOT.WNTUF )
        !          1023:      $          CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 )
        !          1024: *
        !          1025:       ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
        !          1026: *.......................................................................
        !          1027: *       .. the singular values and the right singular vectors requested
        !          1028: *.......................................................................
        !          1029:           IF ( RTRANS ) THEN
        !          1030: *            .. apply DGESVD to R**T
        !          1031: *            .. copy R**T into V and overwrite V with the left singular vectors
        !          1032:             DO 1165 p = 1, NR
        !          1033:                DO 1166 q = p, N
        !          1034:                   V(q,p) = (A(p,q))
        !          1035:  1166          CONTINUE
        !          1036:  1165       CONTINUE
        !          1037:             IF ( NR .GT. 1 )
        !          1038:      $          CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
        !          1039: *           .. the left singular vectors of R**T overwrite V, the right singular
        !          1040: *           vectors not computed
        !          1041:             IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
        !          1042:                CALL DGESVD( 'O', 'N', N, NR, V, LDV, S, U, LDU,
        !          1043:      $              U, LDU, WORK(N+1), LWORK-N, INFO )
        !          1044: *
        !          1045:                DO 1121 p = 1, NR
        !          1046:                    DO 1122 q = p + 1, NR
        !          1047:                       RTMP   = V(q,p)
        !          1048:                       V(q,p) = V(p,q)
        !          1049:                       V(p,q) = RTMP
        !          1050:  1122              CONTINUE
        !          1051:  1121          CONTINUE
        !          1052: *
        !          1053:                IF ( NR .LT. N ) THEN
        !          1054:                    DO 1103 p = 1, NR
        !          1055:                       DO 1104 q = NR + 1, N
        !          1056:                           V(p,q) = V(q,p)
        !          1057:  1104                 CONTINUE
        !          1058:  1103              CONTINUE
        !          1059:                END IF
        !          1060:                CALL DLAPMT( .FALSE., NR, N, V, LDV, IWORK )
        !          1061:             ELSE
        !          1062: *               .. need all N right singular vectors and NR < N
        !          1063: *               [!] This is simple implementation that augments [V](1:N,1:NR)
        !          1064: *               by padding a zero block. In the case NR << N, a more efficient
        !          1065: *               way is to first use the QR factorization. For more details
        !          1066: *               how to implement this, see the " FULL SVD " branch.
        !          1067:                 CALL DLASET('G', N, N-NR, ZERO, ZERO, V(1,NR+1), LDV)
        !          1068:                 CALL DGESVD( 'O', 'N', N, N, V, LDV, S, U, LDU,
        !          1069:      $               U, LDU, WORK(N+1), LWORK-N, INFO )
        !          1070: *
        !          1071:                 DO 1123 p = 1, N
        !          1072:                    DO 1124 q = p + 1, N
        !          1073:                       RTMP   = V(q,p)
        !          1074:                       V(q,p) = V(p,q)
        !          1075:                       V(p,q) = RTMP
        !          1076:  1124              CONTINUE
        !          1077:  1123           CONTINUE
        !          1078:                 CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK )
        !          1079:             END IF
        !          1080: *
        !          1081:           ELSE
        !          1082: *            .. aply DGESVD to R
        !          1083: *            .. copy R into V and overwrite V with the right singular vectors
        !          1084:              CALL DLACPY( 'U', NR, N, A, LDA, V, LDV )
        !          1085:              IF ( NR .GT. 1 )
        !          1086:      $         CALL DLASET( 'L', NR-1, NR-1, ZERO, ZERO, V(2,1), LDV )
        !          1087: *            .. the right singular vectors overwrite V, the NR left singular
        !          1088: *            vectors stored in U(1:NR,1:NR)
        !          1089:              IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
        !          1090:                 CALL DGESVD( 'N', 'O', NR, N, V, LDV, S, U, LDU,
        !          1091:      $               V, LDV, WORK(N+1), LWORK-N, INFO )
        !          1092:                 CALL DLAPMT( .FALSE., NR, N, V, LDV, IWORK )
        !          1093: *               .. now [V](1:NR,1:N) contains V(1:N,1:NR)**T
        !          1094:              ELSE
        !          1095: *               .. need all N right singular vectors and NR < N
        !          1096: *               [!] This is simple implementation that augments [V](1:NR,1:N)
        !          1097: *               by padding a zero block. In the case NR << N, a more efficient
        !          1098: *               way is to first use the LQ factorization. For more details
        !          1099: *               how to implement this, see the " FULL SVD " branch.
        !          1100:                  CALL DLASET('G', N-NR, N, ZERO,ZERO, V(NR+1,1), LDV)
        !          1101:                  CALL DGESVD( 'N', 'O', N, N, V, LDV, S, U, LDU,
        !          1102:      $                V, LDV, WORK(N+1), LWORK-N, INFO )
        !          1103:                  CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK )
        !          1104:              END IF
        !          1105: *            .. now [V] contains the transposed matrix of the right singular
        !          1106: *            vectors of A.
        !          1107:           END IF
        !          1108: *
        !          1109:       ELSE
        !          1110: *.......................................................................
        !          1111: *       .. FULL SVD requested
        !          1112: *.......................................................................
        !          1113:          IF ( RTRANS ) THEN
        !          1114: *
        !          1115: *            .. apply DGESVD to R**T [[this option is left for R&D&T]]
        !          1116: *
        !          1117:             IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
        !          1118: *            .. copy R**T into [V] and overwrite [V] with the left singular
        !          1119: *            vectors of R**T
        !          1120:             DO 1168 p = 1, NR
        !          1121:                DO 1169 q = p, N
        !          1122:                   V(q,p) = A(p,q)
        !          1123:  1169          CONTINUE
        !          1124:  1168       CONTINUE
        !          1125:             IF ( NR .GT. 1 )
        !          1126:      $          CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
        !          1127: *
        !          1128: *           .. the left singular vectors of R**T overwrite [V], the NR right
        !          1129: *           singular vectors of R**T stored in [U](1:NR,1:NR) as transposed
        !          1130:                CALL DGESVD( 'O', 'A', N, NR, V, LDV, S, V, LDV,
        !          1131:      $              U, LDU, WORK(N+1), LWORK-N, INFO )
        !          1132: *              .. assemble V
        !          1133:                DO 1115 p = 1, NR
        !          1134:                   DO 1116 q = p + 1, NR
        !          1135:                      RTMP   = V(q,p)
        !          1136:                      V(q,p) = V(p,q)
        !          1137:                      V(p,q) = RTMP
        !          1138:  1116             CONTINUE
        !          1139:  1115          CONTINUE
        !          1140:                IF ( NR .LT. N ) THEN
        !          1141:                    DO 1101 p = 1, NR
        !          1142:                       DO 1102 q = NR+1, N
        !          1143:                          V(p,q) = V(q,p)
        !          1144:  1102                 CONTINUE
        !          1145:  1101              CONTINUE
        !          1146:                END IF
        !          1147:                CALL DLAPMT( .FALSE., NR, N, V, LDV, IWORK )
        !          1148: *
        !          1149:                 DO 1117 p = 1, NR
        !          1150:                    DO 1118 q = p + 1, NR
        !          1151:                       RTMP   = U(q,p)
        !          1152:                       U(q,p) = U(p,q)
        !          1153:                       U(p,q) = RTMP
        !          1154:  1118              CONTINUE
        !          1155:  1117           CONTINUE
        !          1156: *
        !          1157:                 IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
        !          1158:                   CALL DLASET('A', M-NR,NR, ZERO,ZERO, U(NR+1,1), LDU)
        !          1159:                   IF ( NR .LT. N1 ) THEN
        !          1160:                      CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
        !          1161:                      CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,
        !          1162:      $                    U(NR+1,NR+1), LDU )
        !          1163:                   END IF
        !          1164:                END IF
        !          1165: *
        !          1166:             ELSE
        !          1167: *               .. need all N right singular vectors and NR < N
        !          1168: *            .. copy R**T into [V] and overwrite [V] with the left singular
        !          1169: *            vectors of R**T
        !          1170: *               [[The optimal ratio N/NR for using QRF instead of padding
        !          1171: *                 with zeros. Here hard coded to 2; it must be at least
        !          1172: *                 two due to work space constraints.]]
        !          1173: *               OPTRATIO = ILAENV(6, 'DGESVD', 'S' // 'O', NR,N,0,0)
        !          1174: *               OPTRATIO = MAX( OPTRATIO, 2 )
        !          1175:                 OPTRATIO = 2
        !          1176:                 IF ( OPTRATIO*NR .GT. N ) THEN
        !          1177:                    DO 1198 p = 1, NR
        !          1178:                       DO 1199 q = p, N
        !          1179:                          V(q,p) = A(p,q)
        !          1180:  1199                 CONTINUE
        !          1181:  1198              CONTINUE
        !          1182:                    IF ( NR .GT. 1 )
        !          1183:      $             CALL DLASET('U',NR-1,NR-1, ZERO,ZERO, V(1,2),LDV)
        !          1184: *
        !          1185:                    CALL DLASET('A',N,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
        !          1186:                    CALL DGESVD( 'O', 'A', N, N, V, LDV, S, V, LDV,
        !          1187:      $                  U, LDU, WORK(N+1), LWORK-N, INFO )
        !          1188: *
        !          1189:                    DO 1113 p = 1, N
        !          1190:                       DO 1114 q = p + 1, N
        !          1191:                          RTMP   = V(q,p)
        !          1192:                          V(q,p) = V(p,q)
        !          1193:                          V(p,q) = RTMP
        !          1194:  1114                 CONTINUE
        !          1195:  1113              CONTINUE
        !          1196:                    CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK )
        !          1197: *              .. assemble the left singular vector matrix U of dimensions
        !          1198: *              (M x N1), i.e. (M x N) or (M x M).
        !          1199: *
        !          1200:                    DO 1111 p = 1, N
        !          1201:                       DO 1112 q = p + 1, N
        !          1202:                          RTMP   = U(q,p)
        !          1203:                          U(q,p) = U(p,q)
        !          1204:                          U(p,q) = RTMP
        !          1205:  1112                 CONTINUE
        !          1206:  1111              CONTINUE
        !          1207: *
        !          1208:                    IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN
        !          1209:                       CALL DLASET('A',M-N,N,ZERO,ZERO,U(N+1,1),LDU)
        !          1210:                       IF ( N .LT. N1 ) THEN
        !          1211:                         CALL DLASET('A',N,N1-N,ZERO,ZERO,U(1,N+1),LDU)
        !          1212:                         CALL DLASET('A',M-N,N1-N,ZERO,ONE,
        !          1213:      $                       U(N+1,N+1), LDU )
        !          1214:                       END IF
        !          1215:                    END IF
        !          1216:                 ELSE
        !          1217: *                  .. copy R**T into [U] and overwrite [U] with the right
        !          1218: *                  singular vectors of R
        !          1219:                    DO 1196 p = 1, NR
        !          1220:                       DO 1197 q = p, N
        !          1221:                          U(q,NR+p) = A(p,q)
        !          1222:  1197                 CONTINUE
        !          1223:  1196              CONTINUE
        !          1224:                    IF ( NR .GT. 1 )
        !          1225:      $             CALL DLASET('U',NR-1,NR-1,ZERO,ZERO,U(1,NR+2),LDU)
        !          1226:                    CALL DGEQRF( N, NR, U(1,NR+1), LDU, WORK(N+1),
        !          1227:      $                  WORK(N+NR+1), LWORK-N-NR, IERR )
        !          1228:                    DO 1143 p = 1, NR
        !          1229:                        DO 1144 q = 1, N
        !          1230:                            V(q,p) = U(p,NR+q)
        !          1231:  1144                  CONTINUE
        !          1232:  1143              CONTINUE
        !          1233:                   CALL DLASET('U',NR-1,NR-1,ZERO,ZERO,V(1,2),LDV)
        !          1234:                   CALL DGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU,
        !          1235:      $                 V,LDV, WORK(N+NR+1),LWORK-N-NR, INFO )
        !          1236:                   CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
        !          1237:                   CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
        !          1238:                   CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
        !          1239:                   CALL DORMQR('R','C', N, N, NR, U(1,NR+1), LDU,
        !          1240:      $                 WORK(N+1),V,LDV,WORK(N+NR+1),LWORK-N-NR,IERR)
        !          1241:                   CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK )
        !          1242: *                 .. assemble the left singular vector matrix U of dimensions
        !          1243: *                 (M x NR) or (M x N) or (M x M).
        !          1244:                   IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
        !          1245:                      CALL DLASET('A',M-NR,NR,ZERO,ZERO,U(NR+1,1),LDU)
        !          1246:                      IF ( NR .LT. N1 ) THEN
        !          1247:                      CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
        !          1248:                      CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,
        !          1249:      $                    U(NR+1,NR+1),LDU)
        !          1250:                      END IF
        !          1251:                   END IF
        !          1252:                 END IF
        !          1253:             END IF
        !          1254: *
        !          1255:          ELSE
        !          1256: *
        !          1257: *            .. apply DGESVD to R [[this is the recommended option]]
        !          1258: *
        !          1259:              IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
        !          1260: *                .. copy R into [V] and overwrite V with the right singular vectors
        !          1261:                  CALL DLACPY( 'U', NR, N, A, LDA, V, LDV )
        !          1262:                 IF ( NR .GT. 1 )
        !          1263:      $          CALL DLASET( 'L', NR-1,NR-1, ZERO,ZERO, V(2,1), LDV )
        !          1264: *               .. the right singular vectors of R overwrite [V], the NR left
        !          1265: *               singular vectors of R stored in [U](1:NR,1:NR)
        !          1266:                 CALL DGESVD( 'S', 'O', NR, N, V, LDV, S, U, LDU,
        !          1267:      $               V, LDV, WORK(N+1), LWORK-N, INFO )
        !          1268:                 CALL DLAPMT( .FALSE., NR, N, V, LDV, IWORK )
        !          1269: *               .. now [V](1:NR,1:N) contains V(1:N,1:NR)**T
        !          1270: *               .. assemble the left singular vector matrix U of dimensions
        !          1271: *              (M x NR) or (M x N) or (M x M).
        !          1272:                IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
        !          1273:                   CALL DLASET('A', M-NR,NR, ZERO,ZERO, U(NR+1,1), LDU)
        !          1274:                   IF ( NR .LT. N1 ) THEN
        !          1275:                      CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
        !          1276:                      CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,
        !          1277:      $                    U(NR+1,NR+1), LDU )
        !          1278:                   END IF
        !          1279:                END IF
        !          1280: *
        !          1281:              ELSE
        !          1282: *              .. need all N right singular vectors and NR < N
        !          1283: *              .. the requested number of the left singular vectors
        !          1284: *               is then N1 (N or M)
        !          1285: *               [[The optimal ratio N/NR for using LQ instead of padding
        !          1286: *                 with zeros. Here hard coded to 2; it must be at least
        !          1287: *                 two due to work space constraints.]]
        !          1288: *               OPTRATIO = ILAENV(6, 'DGESVD', 'S' // 'O', NR,N,0,0)
        !          1289: *               OPTRATIO = MAX( OPTRATIO, 2 )
        !          1290:                OPTRATIO = 2
        !          1291:                IF ( OPTRATIO * NR .GT. N ) THEN
        !          1292:                   CALL DLACPY( 'U', NR, N, A, LDA, V, LDV )
        !          1293:                   IF ( NR .GT. 1 )
        !          1294:      $            CALL DLASET('L', NR-1,NR-1, ZERO,ZERO, V(2,1),LDV)
        !          1295: *              .. the right singular vectors of R overwrite [V], the NR left
        !          1296: *                 singular vectors of R stored in [U](1:NR,1:NR)
        !          1297:                   CALL DLASET('A', N-NR,N, ZERO,ZERO, V(NR+1,1),LDV)
        !          1298:                   CALL DGESVD( 'S', 'O', N, N, V, LDV, S, U, LDU,
        !          1299:      $                 V, LDV, WORK(N+1), LWORK-N, INFO )
        !          1300:                   CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK )
        !          1301: *                 .. now [V] contains the transposed matrix of the right
        !          1302: *                 singular vectors of A. The leading N left singular vectors
        !          1303: *                 are in [U](1:N,1:N)
        !          1304: *                 .. assemble the left singular vector matrix U of dimensions
        !          1305: *                 (M x N1), i.e. (M x N) or (M x M).
        !          1306:                   IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN
        !          1307:                       CALL DLASET('A',M-N,N,ZERO,ZERO,U(N+1,1),LDU)
        !          1308:                       IF ( N .LT. N1 ) THEN
        !          1309:                         CALL DLASET('A',N,N1-N,ZERO,ZERO,U(1,N+1),LDU)
        !          1310:                         CALL DLASET( 'A',M-N,N1-N,ZERO,ONE,
        !          1311:      $                       U(N+1,N+1), LDU )
        !          1312:                       END IF
        !          1313:                   END IF
        !          1314:                ELSE
        !          1315:                   CALL DLACPY( 'U', NR, N, A, LDA, U(NR+1,1), LDU )
        !          1316:                   IF ( NR .GT. 1 )
        !          1317:      $            CALL DLASET('L',NR-1,NR-1,ZERO,ZERO,U(NR+2,1),LDU)
        !          1318:                   CALL DGELQF( NR, N, U(NR+1,1), LDU, WORK(N+1),
        !          1319:      $                 WORK(N+NR+1), LWORK-N-NR, IERR )
        !          1320:                   CALL DLACPY('L',NR,NR,U(NR+1,1),LDU,V,LDV)
        !          1321:                   IF ( NR .GT. 1 )
        !          1322:      $            CALL DLASET('U',NR-1,NR-1,ZERO,ZERO,V(1,2),LDV)
        !          1323:                   CALL DGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU,
        !          1324:      $                 V, LDV, WORK(N+NR+1), LWORK-N-NR, INFO )
        !          1325:                   CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
        !          1326:                   CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
        !          1327:                   CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
        !          1328:                   CALL DORMLQ('R','N',N,N,NR,U(NR+1,1),LDU,WORK(N+1),
        !          1329:      $                 V, LDV, WORK(N+NR+1),LWORK-N-NR,IERR)
        !          1330:                   CALL DLAPMT( .FALSE., N, N, V, LDV, IWORK )
        !          1331: *               .. assemble the left singular vector matrix U of dimensions
        !          1332: *              (M x NR) or (M x N) or (M x M).
        !          1333:                   IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
        !          1334:                      CALL DLASET('A',M-NR,NR,ZERO,ZERO,U(NR+1,1),LDU)
        !          1335:                      IF ( NR .LT. N1 ) THEN
        !          1336:                      CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
        !          1337:                      CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,
        !          1338:      $                    U(NR+1,NR+1), LDU )
        !          1339:                      END IF
        !          1340:                   END IF
        !          1341:                END IF
        !          1342:              END IF
        !          1343: *        .. end of the "R**T or R" branch
        !          1344:          END IF
        !          1345: *
        !          1346: *           The Q matrix from the first QRF is built into the left singular
        !          1347: *           vectors matrix U.
        !          1348: *
        !          1349:          IF ( .NOT. WNTUF )
        !          1350:      $       CALL DORMQR( 'L', 'N', M, N1, N, A, LDA, WORK, U,
        !          1351:      $            LDU, WORK(N+1), LWORK-N, IERR )
        !          1352:          IF ( ROWPRM .AND. .NOT.WNTUF )
        !          1353:      $          CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 )
        !          1354: *
        !          1355: *     ... end of the "full SVD" branch
        !          1356:       END IF
        !          1357: *
        !          1358: *     Check whether some singular values are returned as zeros, e.g.
        !          1359: *     due to underflow, and update the numerical rank.
        !          1360:       p = NR
        !          1361:       DO 4001 q = p, 1, -1
        !          1362:           IF ( S(q) .GT. ZERO ) GO TO 4002
        !          1363:           NR = NR - 1
        !          1364:  4001 CONTINUE
        !          1365:  4002 CONTINUE
        !          1366: *
        !          1367: *     .. if numerical rank deficiency is detected, the truncated
        !          1368: *     singular values are set to zero.
        !          1369:       IF ( NR .LT. N ) CALL DLASET( 'G', N-NR,1, ZERO,ZERO, S(NR+1), N )
        !          1370: *     .. undo scaling; this may cause overflow in the largest singular
        !          1371: *     values.
        !          1372:       IF ( ASCALED )
        !          1373:      $   CALL DLASCL( 'G',0,0, ONE,SQRT(DBLE(M)), NR,1, S, N, IERR )
        !          1374:       IF ( CONDA ) RWORK(1) = SCONDA
        !          1375:       RWORK(2) = p - NR
        !          1376: *     .. p-NR is the number of singular values that are computed as
        !          1377: *     exact zeros in DGESVD() applied to the (possibly truncated)
        !          1378: *     full row rank triangular (trapezoidal) factor of A.
        !          1379:       NUMRANK = NR
        !          1380: *
        !          1381:       RETURN
        !          1382: *
        !          1383: *     End of DGESVDQ
        !          1384: *
        !          1385:       END

CVSweb interface <joel.bertrand@systella.fr>