--- rpl/lapack/lapack/dgesv.f 2010/08/06 15:32:24 1.4
+++ rpl/lapack/lapack/dgesv.f 2012/12/14 14:22:29 1.11
@@ -1,9 +1,131 @@
+*> \brief DGESV computes the solution to system of linear equations A * X = B for GE matrices
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DGESV + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDB, N, NRHS
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* DOUBLE PRECISION A( LDA, * ), B( LDB, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DGESV computes the solution to a real system of linear equations
+*> A * X = B,
+*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
+*>
+*> The LU decomposition with partial pivoting and row interchanges is
+*> used to factor A as
+*> A = P * L * U,
+*> where P is a permutation matrix, L is unit lower triangular, and U is
+*> upper triangular. The factored form of A is then used to solve the
+*> system of equations A * X = B.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrix B. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*> On entry, the N-by-N coefficient matrix A.
+*> On exit, the factors L and U from the factorization
+*> A = P*L*U; the unit diagonal elements of L are not stored.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> The pivot indices that define the permutation matrix P;
+*> row i of the matrix was interchanged with row IPIV(i).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
+*> On entry, the N-by-NRHS matrix of right hand side matrix B.
+*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
+*> has been completed, but the factor U is exactly
+*> singular, so the solution could not be computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup doubleGEsolve
+*
+* =====================================================================
SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
-* -- LAPACK driver routine (version 3.2) --
+* -- LAPACK driver routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
+* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, N, NRHS
@@ -13,57 +135,6 @@
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
-* Purpose
-* =======
-*
-* DGESV computes the solution to a real system of linear equations
-* A * X = B,
-* where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
-*
-* The LU decomposition with partial pivoting and row interchanges is
-* used to factor A as
-* A = P * L * U,
-* where P is a permutation matrix, L is unit lower triangular, and U is
-* upper triangular. The factored form of A is then used to solve the
-* system of equations A * X = B.
-*
-* Arguments
-* =========
-*
-* N (input) INTEGER
-* The number of linear equations, i.e., the order of the
-* matrix A. N >= 0.
-*
-* NRHS (input) INTEGER
-* The number of right hand sides, i.e., the number of columns
-* of the matrix B. NRHS >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* On entry, the N-by-N coefficient matrix A.
-* On exit, the factors L and U from the factorization
-* A = P*L*U; the unit diagonal elements of L are not stored.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* IPIV (output) INTEGER array, dimension (N)
-* The pivot indices that define the permutation matrix P;
-* row i of the matrix was interchanged with row IPIV(i).
-*
-* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
-* On entry, the N-by-NRHS matrix of right hand side matrix B.
-* On exit, if INFO = 0, the N-by-NRHS solution matrix X.
-*
-* LDB (input) INTEGER
-* The leading dimension of the array B. LDB >= max(1,N).
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-* > 0: if INFO = i, U(i,i) is exactly zero. The factorization
-* has been completed, but the factor U is exactly
-* singular, so the solution could not be computed.
-*
* =====================================================================
*
* .. External Subroutines ..