Diff for /rpl/lapack/lapack/dgesv.f between versions 1.4 and 1.10

version 1.4, 2010/08/06 15:32:24 version 1.10, 2012/08/22 09:48:14
Line 1 Line 1
   *> \brief <b> DGESV computes the solution to system of linear equations A * X = B for GE matrices</b>
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at 
   *            http://www.netlib.org/lapack/explore-html/ 
   *
   *> \htmlonly
   *> Download DGESV + dependencies 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesv.f"> 
   *> [TGZ]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesv.f"> 
   *> [ZIP]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesv.f"> 
   *> [TXT]</a>
   *> \endhtmlonly
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
   * 
   *       .. Scalar Arguments ..
   *       INTEGER            INFO, LDA, LDB, N, NRHS
   *       ..
   *       .. Array Arguments ..
   *       INTEGER            IPIV( * )
   *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
   *       ..
   *  
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> DGESV computes the solution to a real system of linear equations
   *>    A * X = B,
   *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
   *>
   *> The LU decomposition with partial pivoting and row interchanges is
   *> used to factor A as
   *>    A = P * L * U,
   *> where P is a permutation matrix, L is unit lower triangular, and U is
   *> upper triangular.  The factored form of A is then used to solve the
   *> system of equations A * X = B.
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The number of linear equations, i.e., the order of the
   *>          matrix A.  N >= 0.
   *> \endverbatim
   *>
   *> \param[in] NRHS
   *> \verbatim
   *>          NRHS is INTEGER
   *>          The number of right hand sides, i.e., the number of columns
   *>          of the matrix B.  NRHS >= 0.
   *> \endverbatim
   *>
   *> \param[in,out] A
   *> \verbatim
   *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   *>          On entry, the N-by-N coefficient matrix A.
   *>          On exit, the factors L and U from the factorization
   *>          A = P*L*U; the unit diagonal elements of L are not stored.
   *> \endverbatim
   *>
   *> \param[in] LDA
   *> \verbatim
   *>          LDA is INTEGER
   *>          The leading dimension of the array A.  LDA >= max(1,N).
   *> \endverbatim
   *>
   *> \param[out] IPIV
   *> \verbatim
   *>          IPIV is INTEGER array, dimension (N)
   *>          The pivot indices that define the permutation matrix P;
   *>          row i of the matrix was interchanged with row IPIV(i).
   *> \endverbatim
   *>
   *> \param[in,out] B
   *> \verbatim
   *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   *>          On entry, the N-by-NRHS matrix of right hand side matrix B.
   *>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
   *> \endverbatim
   *>
   *> \param[in] LDB
   *> \verbatim
   *>          LDB is INTEGER
   *>          The leading dimension of the array B.  LDB >= max(1,N).
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>          = 0:  successful exit
   *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   *>          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
   *>                has been completed, but the factor U is exactly
   *>                singular, so the solution could not be computed.
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee 
   *> \author Univ. of California Berkeley 
   *> \author Univ. of Colorado Denver 
   *> \author NAG Ltd. 
   *
   *> \date November 2011
   *
   *> \ingroup doubleGEsolve
   *
   *  =====================================================================
       SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )        SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
 *  *
 *  -- LAPACK driver routine (version 3.2) --  *  -- LAPACK driver routine (version 3.4.0) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *     November 2006  *     November 2011
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       INTEGER            INFO, LDA, LDB, N, NRHS        INTEGER            INFO, LDA, LDB, N, NRHS
Line 13 Line 135
       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )        DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  DGESV computes the solution to a real system of linear equations  
 *     A * X = B,  
 *  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.  
 *  
 *  The LU decomposition with partial pivoting and row interchanges is  
 *  used to factor A as  
 *     A = P * L * U,  
 *  where P is a permutation matrix, L is unit lower triangular, and U is  
 *  upper triangular.  The factored form of A is then used to solve the  
 *  system of equations A * X = B.  
 *  
 *  Arguments  
 *  =========  
 *  
 *  N       (input) INTEGER  
 *          The number of linear equations, i.e., the order of the  
 *          matrix A.  N >= 0.  
 *  
 *  NRHS    (input) INTEGER  
 *          The number of right hand sides, i.e., the number of columns  
 *          of the matrix B.  NRHS >= 0.  
 *  
 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)  
 *          On entry, the N-by-N coefficient matrix A.  
 *          On exit, the factors L and U from the factorization  
 *          A = P*L*U; the unit diagonal elements of L are not stored.  
 *  
 *  LDA     (input) INTEGER  
 *          The leading dimension of the array A.  LDA >= max(1,N).  
 *  
 *  IPIV    (output) INTEGER array, dimension (N)  
 *          The pivot indices that define the permutation matrix P;  
 *          row i of the matrix was interchanged with row IPIV(i).  
 *  
 *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)  
 *          On entry, the N-by-NRHS matrix of right hand side matrix B.  
 *          On exit, if INFO = 0, the N-by-NRHS solution matrix X.  
 *  
 *  LDB     (input) INTEGER  
 *          The leading dimension of the array B.  LDB >= max(1,N).  
 *  
 *  INFO    (output) INTEGER  
 *          = 0:  successful exit  
 *          < 0:  if INFO = -i, the i-th argument had an illegal value  
 *          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization  
 *                has been completed, but the factor U is exactly  
 *                singular, so the solution could not be computed.  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. External Subroutines ..  *     .. External Subroutines ..

Removed from v.1.4  
changed lines
  Added in v.1.10


CVSweb interface <joel.bertrand@systella.fr>