Annotation of rpl/lapack/lapack/dgerqf.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DGERQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INFO, LDA, LWORK, M, N
                     10: *     ..
                     11: *     .. Array Arguments ..
                     12:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                     13: *     ..
                     14: *
                     15: *  Purpose
                     16: *  =======
                     17: *
                     18: *  DGERQF computes an RQ factorization of a real M-by-N matrix A:
                     19: *  A = R * Q.
                     20: *
                     21: *  Arguments
                     22: *  =========
                     23: *
                     24: *  M       (input) INTEGER
                     25: *          The number of rows of the matrix A.  M >= 0.
                     26: *
                     27: *  N       (input) INTEGER
                     28: *          The number of columns of the matrix A.  N >= 0.
                     29: *
                     30: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     31: *          On entry, the M-by-N matrix A.
                     32: *          On exit,
                     33: *          if m <= n, the upper triangle of the subarray
                     34: *          A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
                     35: *          if m >= n, the elements on and above the (m-n)-th subdiagonal
                     36: *          contain the M-by-N upper trapezoidal matrix R;
                     37: *          the remaining elements, with the array TAU, represent the
                     38: *          orthogonal matrix Q as a product of min(m,n) elementary
                     39: *          reflectors (see Further Details).
                     40: *
                     41: *  LDA     (input) INTEGER
                     42: *          The leading dimension of the array A.  LDA >= max(1,M).
                     43: *
                     44: *  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
                     45: *          The scalar factors of the elementary reflectors (see Further
                     46: *          Details).
                     47: *
                     48: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     49: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     50: *
                     51: *  LWORK   (input) INTEGER
                     52: *          The dimension of the array WORK.  LWORK >= max(1,M).
                     53: *          For optimum performance LWORK >= M*NB, where NB is
                     54: *          the optimal blocksize.
                     55: *
                     56: *          If LWORK = -1, then a workspace query is assumed; the routine
                     57: *          only calculates the optimal size of the WORK array, returns
                     58: *          this value as the first entry of the WORK array, and no error
                     59: *          message related to LWORK is issued by XERBLA.
                     60: *
                     61: *  INFO    (output) INTEGER
                     62: *          = 0:  successful exit
                     63: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     64: *
                     65: *  Further Details
                     66: *  ===============
                     67: *
                     68: *  The matrix Q is represented as a product of elementary reflectors
                     69: *
                     70: *     Q = H(1) H(2) . . . H(k), where k = min(m,n).
                     71: *
                     72: *  Each H(i) has the form
                     73: *
                     74: *     H(i) = I - tau * v * v'
                     75: *
                     76: *  where tau is a real scalar, and v is a real vector with
                     77: *  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
                     78: *  A(m-k+i,1:n-k+i-1), and tau in TAU(i).
                     79: *
                     80: *  =====================================================================
                     81: *
                     82: *     .. Local Scalars ..
                     83:       LOGICAL            LQUERY
                     84:       INTEGER            I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
                     85:      $                   MU, NB, NBMIN, NU, NX
                     86: *     ..
                     87: *     .. External Subroutines ..
                     88:       EXTERNAL           DGERQ2, DLARFB, DLARFT, XERBLA
                     89: *     ..
                     90: *     .. Intrinsic Functions ..
                     91:       INTRINSIC          MAX, MIN
                     92: *     ..
                     93: *     .. External Functions ..
                     94:       INTEGER            ILAENV
                     95:       EXTERNAL           ILAENV
                     96: *     ..
                     97: *     .. Executable Statements ..
                     98: *
                     99: *     Test the input arguments
                    100: *
                    101:       INFO = 0
                    102:       LQUERY = ( LWORK.EQ.-1 )
                    103:       IF( M.LT.0 ) THEN
                    104:          INFO = -1
                    105:       ELSE IF( N.LT.0 ) THEN
                    106:          INFO = -2
                    107:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    108:          INFO = -4
                    109:       END IF
                    110: *
                    111:       IF( INFO.EQ.0 ) THEN
                    112:          K = MIN( M, N )
                    113:          IF( K.EQ.0 ) THEN
                    114:             LWKOPT = 1
                    115:          ELSE
                    116:             NB = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
                    117:             LWKOPT = M*NB
                    118:          END IF
                    119:          WORK( 1 ) = LWKOPT
                    120: *
                    121:          IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
                    122:             INFO = -7
                    123:          END IF
                    124:       END IF
                    125: *
                    126:       IF( INFO.NE.0 ) THEN
                    127:          CALL XERBLA( 'DGERQF', -INFO )
                    128:          RETURN
                    129:       ELSE IF( LQUERY ) THEN
                    130:          RETURN
                    131:       END IF
                    132: *
                    133: *     Quick return if possible
                    134: *
                    135:       IF( K.EQ.0 ) THEN
                    136:          RETURN
                    137:       END IF
                    138: *
                    139:       NBMIN = 2
                    140:       NX = 1
                    141:       IWS = M
                    142:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
                    143: *
                    144: *        Determine when to cross over from blocked to unblocked code.
                    145: *
                    146:          NX = MAX( 0, ILAENV( 3, 'DGERQF', ' ', M, N, -1, -1 ) )
                    147:          IF( NX.LT.K ) THEN
                    148: *
                    149: *           Determine if workspace is large enough for blocked code.
                    150: *
                    151:             LDWORK = M
                    152:             IWS = LDWORK*NB
                    153:             IF( LWORK.LT.IWS ) THEN
                    154: *
                    155: *              Not enough workspace to use optimal NB:  reduce NB and
                    156: *              determine the minimum value of NB.
                    157: *
                    158:                NB = LWORK / LDWORK
                    159:                NBMIN = MAX( 2, ILAENV( 2, 'DGERQF', ' ', M, N, -1,
                    160:      $                 -1 ) )
                    161:             END IF
                    162:          END IF
                    163:       END IF
                    164: *
                    165:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
                    166: *
                    167: *        Use blocked code initially.
                    168: *        The last kk rows are handled by the block method.
                    169: *
                    170:          KI = ( ( K-NX-1 ) / NB )*NB
                    171:          KK = MIN( K, KI+NB )
                    172: *
                    173:          DO 10 I = K - KK + KI + 1, K - KK + 1, -NB
                    174:             IB = MIN( K-I+1, NB )
                    175: *
                    176: *           Compute the RQ factorization of the current block
                    177: *           A(m-k+i:m-k+i+ib-1,1:n-k+i+ib-1)
                    178: *
                    179:             CALL DGERQ2( IB, N-K+I+IB-1, A( M-K+I, 1 ), LDA, TAU( I ),
                    180:      $                   WORK, IINFO )
                    181:             IF( M-K+I.GT.1 ) THEN
                    182: *
                    183: *              Form the triangular factor of the block reflector
                    184: *              H = H(i+ib-1) . . . H(i+1) H(i)
                    185: *
                    186:                CALL DLARFT( 'Backward', 'Rowwise', N-K+I+IB-1, IB,
                    187:      $                      A( M-K+I, 1 ), LDA, TAU( I ), WORK, LDWORK )
                    188: *
                    189: *              Apply H to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
                    190: *
                    191:                CALL DLARFB( 'Right', 'No transpose', 'Backward',
                    192:      $                      'Rowwise', M-K+I-1, N-K+I+IB-1, IB,
                    193:      $                      A( M-K+I, 1 ), LDA, WORK, LDWORK, A, LDA,
                    194:      $                      WORK( IB+1 ), LDWORK )
                    195:             END IF
                    196:    10    CONTINUE
                    197:          MU = M - K + I + NB - 1
                    198:          NU = N - K + I + NB - 1
                    199:       ELSE
                    200:          MU = M
                    201:          NU = N
                    202:       END IF
                    203: *
                    204: *     Use unblocked code to factor the last or only block
                    205: *
                    206:       IF( MU.GT.0 .AND. NU.GT.0 )
                    207:      $   CALL DGERQ2( MU, NU, A, LDA, TAU, WORK, IINFO )
                    208: *
                    209:       WORK( 1 ) = IWS
                    210:       RETURN
                    211: *
                    212: *     End of DGERQF
                    213: *
                    214:       END

CVSweb interface <joel.bertrand@systella.fr>