Annotation of rpl/lapack/lapack/dgerqf.f, revision 1.18

1.9       bertrand    1: *> \brief \b DGERQF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DGERQF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgerqf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgerqf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgerqf.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGERQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
1.15      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, LWORK, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.15      bertrand   29: *
1.9       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DGERQF computes an RQ factorization of a real M-by-N matrix A:
                     37: *> A = R * Q.
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] M
                     44: *> \verbatim
                     45: *>          M is INTEGER
                     46: *>          The number of rows of the matrix A.  M >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The number of columns of the matrix A.  N >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in,out] A
                     56: *> \verbatim
                     57: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     58: *>          On entry, the M-by-N matrix A.
                     59: *>          On exit,
                     60: *>          if m <= n, the upper triangle of the subarray
                     61: *>          A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
                     62: *>          if m >= n, the elements on and above the (m-n)-th subdiagonal
                     63: *>          contain the M-by-N upper trapezoidal matrix R;
                     64: *>          the remaining elements, with the array TAU, represent the
                     65: *>          orthogonal matrix Q as a product of min(m,n) elementary
                     66: *>          reflectors (see Further Details).
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] LDA
                     70: *> \verbatim
                     71: *>          LDA is INTEGER
                     72: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[out] TAU
                     76: *> \verbatim
                     77: *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
                     78: *>          The scalar factors of the elementary reflectors (see Further
                     79: *>          Details).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[out] WORK
                     83: *> \verbatim
                     84: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     85: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in] LWORK
                     89: *> \verbatim
                     90: *>          LWORK is INTEGER
1.18    ! bertrand   91: *>          The dimension of the array WORK.
        !            92: *>          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise.
1.9       bertrand   93: *>          For optimum performance LWORK >= M*NB, where NB is
                     94: *>          the optimal blocksize.
                     95: *>
                     96: *>          If LWORK = -1, then a workspace query is assumed; the routine
                     97: *>          only calculates the optimal size of the WORK array, returns
                     98: *>          this value as the first entry of the WORK array, and no error
                     99: *>          message related to LWORK is issued by XERBLA.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[out] INFO
                    103: *> \verbatim
                    104: *>          INFO is INTEGER
                    105: *>          = 0:  successful exit
                    106: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    107: *> \endverbatim
                    108: *
                    109: *  Authors:
                    110: *  ========
                    111: *
1.15      bertrand  112: *> \author Univ. of Tennessee
                    113: *> \author Univ. of California Berkeley
                    114: *> \author Univ. of Colorado Denver
                    115: *> \author NAG Ltd.
1.9       bertrand  116: *
                    117: *> \ingroup doubleGEcomputational
                    118: *
                    119: *> \par Further Details:
                    120: *  =====================
                    121: *>
                    122: *> \verbatim
                    123: *>
                    124: *>  The matrix Q is represented as a product of elementary reflectors
                    125: *>
                    126: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
                    127: *>
                    128: *>  Each H(i) has the form
                    129: *>
                    130: *>     H(i) = I - tau * v * v**T
                    131: *>
                    132: *>  where tau is a real scalar, and v is a real vector with
                    133: *>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
                    134: *>  A(m-k+i,1:n-k+i-1), and tau in TAU(i).
                    135: *> \endverbatim
                    136: *>
                    137: *  =====================================================================
1.1       bertrand  138:       SUBROUTINE DGERQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
                    139: *
1.18    ! bertrand  140: *  -- LAPACK computational routine --
1.1       bertrand  141: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    142: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    143: *
                    144: *     .. Scalar Arguments ..
                    145:       INTEGER            INFO, LDA, LWORK, M, N
                    146: *     ..
                    147: *     .. Array Arguments ..
                    148:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                    149: *     ..
                    150: *
                    151: *  =====================================================================
                    152: *
                    153: *     .. Local Scalars ..
                    154:       LOGICAL            LQUERY
                    155:       INTEGER            I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
                    156:      $                   MU, NB, NBMIN, NU, NX
                    157: *     ..
                    158: *     .. External Subroutines ..
                    159:       EXTERNAL           DGERQ2, DLARFB, DLARFT, XERBLA
                    160: *     ..
                    161: *     .. Intrinsic Functions ..
                    162:       INTRINSIC          MAX, MIN
                    163: *     ..
                    164: *     .. External Functions ..
                    165:       INTEGER            ILAENV
                    166:       EXTERNAL           ILAENV
                    167: *     ..
                    168: *     .. Executable Statements ..
                    169: *
                    170: *     Test the input arguments
                    171: *
                    172:       INFO = 0
                    173:       LQUERY = ( LWORK.EQ.-1 )
                    174:       IF( M.LT.0 ) THEN
                    175:          INFO = -1
                    176:       ELSE IF( N.LT.0 ) THEN
                    177:          INFO = -2
                    178:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    179:          INFO = -4
                    180:       END IF
                    181: *
                    182:       IF( INFO.EQ.0 ) THEN
                    183:          K = MIN( M, N )
                    184:          IF( K.EQ.0 ) THEN
                    185:             LWKOPT = 1
                    186:          ELSE
                    187:             NB = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
                    188:             LWKOPT = M*NB
                    189:          END IF
                    190:          WORK( 1 ) = LWKOPT
                    191: *
1.18    ! bertrand  192:          IF ( .NOT.LQUERY ) THEN
        !           193:             IF( LWORK.LE.0 .OR. ( N.GT.0 .AND. LWORK.LT.MAX( 1, M ) ) )
        !           194:      $         INFO = -7
1.1       bertrand  195:          END IF
                    196:       END IF
                    197: *
                    198:       IF( INFO.NE.0 ) THEN
                    199:          CALL XERBLA( 'DGERQF', -INFO )
                    200:          RETURN
                    201:       ELSE IF( LQUERY ) THEN
                    202:          RETURN
                    203:       END IF
                    204: *
                    205: *     Quick return if possible
                    206: *
                    207:       IF( K.EQ.0 ) THEN
                    208:          RETURN
                    209:       END IF
                    210: *
                    211:       NBMIN = 2
                    212:       NX = 1
                    213:       IWS = M
                    214:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
                    215: *
                    216: *        Determine when to cross over from blocked to unblocked code.
                    217: *
                    218:          NX = MAX( 0, ILAENV( 3, 'DGERQF', ' ', M, N, -1, -1 ) )
                    219:          IF( NX.LT.K ) THEN
                    220: *
                    221: *           Determine if workspace is large enough for blocked code.
                    222: *
                    223:             LDWORK = M
                    224:             IWS = LDWORK*NB
                    225:             IF( LWORK.LT.IWS ) THEN
                    226: *
                    227: *              Not enough workspace to use optimal NB:  reduce NB and
                    228: *              determine the minimum value of NB.
                    229: *
                    230:                NB = LWORK / LDWORK
                    231:                NBMIN = MAX( 2, ILAENV( 2, 'DGERQF', ' ', M, N, -1,
                    232:      $                 -1 ) )
                    233:             END IF
                    234:          END IF
                    235:       END IF
                    236: *
                    237:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
                    238: *
                    239: *        Use blocked code initially.
                    240: *        The last kk rows are handled by the block method.
                    241: *
                    242:          KI = ( ( K-NX-1 ) / NB )*NB
                    243:          KK = MIN( K, KI+NB )
                    244: *
                    245:          DO 10 I = K - KK + KI + 1, K - KK + 1, -NB
                    246:             IB = MIN( K-I+1, NB )
                    247: *
                    248: *           Compute the RQ factorization of the current block
                    249: *           A(m-k+i:m-k+i+ib-1,1:n-k+i+ib-1)
                    250: *
                    251:             CALL DGERQ2( IB, N-K+I+IB-1, A( M-K+I, 1 ), LDA, TAU( I ),
                    252:      $                   WORK, IINFO )
                    253:             IF( M-K+I.GT.1 ) THEN
                    254: *
                    255: *              Form the triangular factor of the block reflector
                    256: *              H = H(i+ib-1) . . . H(i+1) H(i)
                    257: *
                    258:                CALL DLARFT( 'Backward', 'Rowwise', N-K+I+IB-1, IB,
                    259:      $                      A( M-K+I, 1 ), LDA, TAU( I ), WORK, LDWORK )
                    260: *
                    261: *              Apply H to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
                    262: *
                    263:                CALL DLARFB( 'Right', 'No transpose', 'Backward',
                    264:      $                      'Rowwise', M-K+I-1, N-K+I+IB-1, IB,
                    265:      $                      A( M-K+I, 1 ), LDA, WORK, LDWORK, A, LDA,
                    266:      $                      WORK( IB+1 ), LDWORK )
                    267:             END IF
                    268:    10    CONTINUE
                    269:          MU = M - K + I + NB - 1
                    270:          NU = N - K + I + NB - 1
                    271:       ELSE
                    272:          MU = M
                    273:          NU = N
                    274:       END IF
                    275: *
                    276: *     Use unblocked code to factor the last or only block
                    277: *
                    278:       IF( MU.GT.0 .AND. NU.GT.0 )
                    279:      $   CALL DGERQ2( MU, NU, A, LDA, TAU, WORK, IINFO )
                    280: *
                    281:       WORK( 1 ) = IWS
                    282:       RETURN
                    283: *
                    284: *     End of DGERQF
                    285: *
                    286:       END

CVSweb interface <joel.bertrand@systella.fr>