Diff for /rpl/lapack/lapack/dgerqf.f between versions 1.8 and 1.9

version 1.8, 2011/07/22 07:38:05 version 1.9, 2011/11/21 20:42:51
Line 1 Line 1
   *> \brief \b DGERQF
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at 
   *            http://www.netlib.org/lapack/explore-html/ 
   *
   *> \htmlonly
   *> Download DGERQF + dependencies 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgerqf.f"> 
   *> [TGZ]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgerqf.f"> 
   *> [ZIP]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgerqf.f"> 
   *> [TXT]</a>
   *> \endhtmlonly 
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE DGERQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
   * 
   *       .. Scalar Arguments ..
   *       INTEGER            INFO, LDA, LWORK, M, N
   *       ..
   *       .. Array Arguments ..
   *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
   *       ..
   *  
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> DGERQF computes an RQ factorization of a real M-by-N matrix A:
   *> A = R * Q.
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] M
   *> \verbatim
   *>          M is INTEGER
   *>          The number of rows of the matrix A.  M >= 0.
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The number of columns of the matrix A.  N >= 0.
   *> \endverbatim
   *>
   *> \param[in,out] A
   *> \verbatim
   *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   *>          On entry, the M-by-N matrix A.
   *>          On exit,
   *>          if m <= n, the upper triangle of the subarray
   *>          A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
   *>          if m >= n, the elements on and above the (m-n)-th subdiagonal
   *>          contain the M-by-N upper trapezoidal matrix R;
   *>          the remaining elements, with the array TAU, represent the
   *>          orthogonal matrix Q as a product of min(m,n) elementary
   *>          reflectors (see Further Details).
   *> \endverbatim
   *>
   *> \param[in] LDA
   *> \verbatim
   *>          LDA is INTEGER
   *>          The leading dimension of the array A.  LDA >= max(1,M).
   *> \endverbatim
   *>
   *> \param[out] TAU
   *> \verbatim
   *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
   *>          The scalar factors of the elementary reflectors (see Further
   *>          Details).
   *> \endverbatim
   *>
   *> \param[out] WORK
   *> \verbatim
   *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   *> \endverbatim
   *>
   *> \param[in] LWORK
   *> \verbatim
   *>          LWORK is INTEGER
   *>          The dimension of the array WORK.  LWORK >= max(1,M).
   *>          For optimum performance LWORK >= M*NB, where NB is
   *>          the optimal blocksize.
   *>
   *>          If LWORK = -1, then a workspace query is assumed; the routine
   *>          only calculates the optimal size of the WORK array, returns
   *>          this value as the first entry of the WORK array, and no error
   *>          message related to LWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>          = 0:  successful exit
   *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee 
   *> \author Univ. of California Berkeley 
   *> \author Univ. of Colorado Denver 
   *> \author NAG Ltd. 
   *
   *> \date November 2011
   *
   *> \ingroup doubleGEcomputational
   *
   *> \par Further Details:
   *  =====================
   *>
   *> \verbatim
   *>
   *>  The matrix Q is represented as a product of elementary reflectors
   *>
   *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
   *>
   *>  Each H(i) has the form
   *>
   *>     H(i) = I - tau * v * v**T
   *>
   *>  where tau is a real scalar, and v is a real vector with
   *>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
   *>  A(m-k+i,1:n-k+i-1), and tau in TAU(i).
   *> \endverbatim
   *>
   *  =====================================================================
       SUBROUTINE DGERQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )        SUBROUTINE DGERQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 *  *
 *  -- LAPACK routine (version 3.3.1) --  *  -- LAPACK computational routine (version 3.4.0) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *  -- April 2011                                                      --  *     November 2011
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       INTEGER            INFO, LDA, LWORK, M, N        INTEGER            INFO, LDA, LWORK, M, N
Line 12 Line 150
       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )        DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  DGERQF computes an RQ factorization of a real M-by-N matrix A:  
 *  A = R * Q.  
 *  
 *  Arguments  
 *  =========  
 *  
 *  M       (input) INTEGER  
 *          The number of rows of the matrix A.  M >= 0.  
 *  
 *  N       (input) INTEGER  
 *          The number of columns of the matrix A.  N >= 0.  
 *  
 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)  
 *          On entry, the M-by-N matrix A.  
 *          On exit,  
 *          if m <= n, the upper triangle of the subarray  
 *          A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;  
 *          if m >= n, the elements on and above the (m-n)-th subdiagonal  
 *          contain the M-by-N upper trapezoidal matrix R;  
 *          the remaining elements, with the array TAU, represent the  
 *          orthogonal matrix Q as a product of min(m,n) elementary  
 *          reflectors (see Further Details).  
 *  
 *  LDA     (input) INTEGER  
 *          The leading dimension of the array A.  LDA >= max(1,M).  
 *  
 *  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))  
 *          The scalar factors of the elementary reflectors (see Further  
 *          Details).  
 *  
 *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))  
 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.  
 *  
 *  LWORK   (input) INTEGER  
 *          The dimension of the array WORK.  LWORK >= max(1,M).  
 *          For optimum performance LWORK >= M*NB, where NB is  
 *          the optimal blocksize.  
 *  
 *          If LWORK = -1, then a workspace query is assumed; the routine  
 *          only calculates the optimal size of the WORK array, returns  
 *          this value as the first entry of the WORK array, and no error  
 *          message related to LWORK is issued by XERBLA.  
 *  
 *  INFO    (output) INTEGER  
 *          = 0:  successful exit  
 *          < 0:  if INFO = -i, the i-th argument had an illegal value  
 *  
 *  Further Details  
 *  ===============  
 *  
 *  The matrix Q is represented as a product of elementary reflectors  
 *  
 *     Q = H(1) H(2) . . . H(k), where k = min(m,n).  
 *  
 *  Each H(i) has the form  
 *  
 *     H(i) = I - tau * v * v**T  
 *  
 *  where tau is a real scalar, and v is a real vector with  
 *  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in  
 *  A(m-k+i,1:n-k+i-1), and tau in TAU(i).  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Local Scalars ..  *     .. Local Scalars ..

Removed from v.1.8  
changed lines
  Added in v.1.9


CVSweb interface <joel.bertrand@systella.fr>