Annotation of rpl/lapack/lapack/dgerq2.f, revision 1.14

1.13      bertrand    1: *> \brief \b DGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGERQ2 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgerq2.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgerq2.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgerq2.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGERQ2( M, N, A, LDA, TAU, WORK, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
                     29: *  
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DGERQ2 computes an RQ factorization of a real m by n matrix A:
                     37: *> A = R * Q.
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] M
                     44: *> \verbatim
                     45: *>          M is INTEGER
                     46: *>          The number of rows of the matrix A.  M >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The number of columns of the matrix A.  N >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in,out] A
                     56: *> \verbatim
                     57: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     58: *>          On entry, the m by n matrix A.
                     59: *>          On exit, if m <= n, the upper triangle of the subarray
                     60: *>          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
                     61: *>          if m >= n, the elements on and above the (m-n)-th subdiagonal
                     62: *>          contain the m by n upper trapezoidal matrix R; the remaining
                     63: *>          elements, with the array TAU, represent the orthogonal matrix
                     64: *>          Q as a product of elementary reflectors (see Further
                     65: *>          Details).
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] LDA
                     69: *> \verbatim
                     70: *>          LDA is INTEGER
                     71: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[out] TAU
                     75: *> \verbatim
                     76: *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
                     77: *>          The scalar factors of the elementary reflectors (see Further
                     78: *>          Details).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[out] WORK
                     82: *> \verbatim
                     83: *>          WORK is DOUBLE PRECISION array, dimension (M)
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[out] INFO
                     87: *> \verbatim
                     88: *>          INFO is INTEGER
                     89: *>          = 0: successful exit
                     90: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     91: *> \endverbatim
                     92: *
                     93: *  Authors:
                     94: *  ========
                     95: *
                     96: *> \author Univ. of Tennessee 
                     97: *> \author Univ. of California Berkeley 
                     98: *> \author Univ. of Colorado Denver 
                     99: *> \author NAG Ltd. 
                    100: *
1.13      bertrand  101: *> \date September 2012
1.10      bertrand  102: *
                    103: *> \ingroup doubleGEcomputational
                    104: *
                    105: *> \par Further Details:
                    106: *  =====================
                    107: *>
                    108: *> \verbatim
                    109: *>
                    110: *>  The matrix Q is represented as a product of elementary reflectors
                    111: *>
                    112: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
                    113: *>
                    114: *>  Each H(i) has the form
                    115: *>
                    116: *>     H(i) = I - tau * v * v**T
                    117: *>
                    118: *>  where tau is a real scalar, and v is a real vector with
                    119: *>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
                    120: *>  A(m-k+i,1:n-k+i-1), and tau in TAU(i).
                    121: *> \endverbatim
                    122: *>
                    123: *  =====================================================================
1.1       bertrand  124:       SUBROUTINE DGERQ2( M, N, A, LDA, TAU, WORK, INFO )
                    125: *
1.13      bertrand  126: *  -- LAPACK computational routine (version 3.4.2) --
1.1       bertrand  127: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    128: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.13      bertrand  129: *     September 2012
1.1       bertrand  130: *
                    131: *     .. Scalar Arguments ..
                    132:       INTEGER            INFO, LDA, M, N
                    133: *     ..
                    134: *     .. Array Arguments ..
                    135:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                    136: *     ..
                    137: *
                    138: *  =====================================================================
                    139: *
                    140: *     .. Parameters ..
                    141:       DOUBLE PRECISION   ONE
                    142:       PARAMETER          ( ONE = 1.0D+0 )
                    143: *     ..
                    144: *     .. Local Scalars ..
                    145:       INTEGER            I, K
                    146:       DOUBLE PRECISION   AII
                    147: *     ..
                    148: *     .. External Subroutines ..
1.5       bertrand  149:       EXTERNAL           DLARF, DLARFG, XERBLA
1.1       bertrand  150: *     ..
                    151: *     .. Intrinsic Functions ..
                    152:       INTRINSIC          MAX, MIN
                    153: *     ..
                    154: *     .. Executable Statements ..
                    155: *
                    156: *     Test the input arguments
                    157: *
                    158:       INFO = 0
                    159:       IF( M.LT.0 ) THEN
                    160:          INFO = -1
                    161:       ELSE IF( N.LT.0 ) THEN
                    162:          INFO = -2
                    163:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    164:          INFO = -4
                    165:       END IF
                    166:       IF( INFO.NE.0 ) THEN
                    167:          CALL XERBLA( 'DGERQ2', -INFO )
                    168:          RETURN
                    169:       END IF
                    170: *
                    171:       K = MIN( M, N )
                    172: *
                    173:       DO 10 I = K, 1, -1
                    174: *
                    175: *        Generate elementary reflector H(i) to annihilate
                    176: *        A(m-k+i,1:n-k+i-1)
                    177: *
1.5       bertrand  178:          CALL DLARFG( N-K+I, A( M-K+I, N-K+I ), A( M-K+I, 1 ), LDA,
1.1       bertrand  179:      $                TAU( I ) )
                    180: *
                    181: *        Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
                    182: *
                    183:          AII = A( M-K+I, N-K+I )
                    184:          A( M-K+I, N-K+I ) = ONE
                    185:          CALL DLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
                    186:      $               TAU( I ), A, LDA, WORK )
                    187:          A( M-K+I, N-K+I ) = AII
                    188:    10 CONTINUE
                    189:       RETURN
                    190: *
                    191: *     End of DGERQ2
                    192: *
                    193:       END

CVSweb interface <joel.bertrand@systella.fr>