File:  [local] / rpl / lapack / lapack / dgerfsx.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:49 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DGERFSX
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGERFSX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgerfsx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgerfsx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgerfsx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
   22: *                           R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
   23: *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
   24: *                           WORK, IWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          TRANS, EQUED
   28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   29: *      $                   N_ERR_BNDS
   30: *       DOUBLE PRECISION   RCOND
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       INTEGER            IPIV( * ), IWORK( * )
   34: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   35: *      $                   X( LDX , * ), WORK( * )
   36: *       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
   37: *      $                   ERR_BNDS_NORM( NRHS, * ),
   38: *      $                   ERR_BNDS_COMP( NRHS, * )
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *>    DGERFSX improves the computed solution to a system of linear
   48: *>    equations and provides error bounds and backward error estimates
   49: *>    for the solution.  In addition to normwise error bound, the code
   50: *>    provides maximum componentwise error bound if possible.  See
   51: *>    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
   52: *>    error bounds.
   53: *>
   54: *>    The original system of linear equations may have been equilibrated
   55: *>    before calling this routine, as described by arguments EQUED, R
   56: *>    and C below. In this case, the solution and error bounds returned
   57: *>    are for the original unequilibrated system.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \verbatim
   64: *>     Some optional parameters are bundled in the PARAMS array.  These
   65: *>     settings determine how refinement is performed, but often the
   66: *>     defaults are acceptable.  If the defaults are acceptable, users
   67: *>     can pass NPARAMS = 0 which prevents the source code from accessing
   68: *>     the PARAMS argument.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] TRANS
   72: *> \verbatim
   73: *>          TRANS is CHARACTER*1
   74: *>     Specifies the form of the system of equations:
   75: *>       = 'N':  A * X = B     (No transpose)
   76: *>       = 'T':  A**T * X = B  (Transpose)
   77: *>       = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   78: *> \endverbatim
   79: *>
   80: *> \param[in] EQUED
   81: *> \verbatim
   82: *>          EQUED is CHARACTER*1
   83: *>     Specifies the form of equilibration that was done to A
   84: *>     before calling this routine. This is needed to compute
   85: *>     the solution and error bounds correctly.
   86: *>       = 'N':  No equilibration
   87: *>       = 'R':  Row equilibration, i.e., A has been premultiplied by
   88: *>               diag(R).
   89: *>       = 'C':  Column equilibration, i.e., A has been postmultiplied
   90: *>               by diag(C).
   91: *>       = 'B':  Both row and column equilibration, i.e., A has been
   92: *>               replaced by diag(R) * A * diag(C).
   93: *>               The right hand side B has been changed accordingly.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] N
   97: *> \verbatim
   98: *>          N is INTEGER
   99: *>     The order of the matrix A.  N >= 0.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] NRHS
  103: *> \verbatim
  104: *>          NRHS is INTEGER
  105: *>     The number of right hand sides, i.e., the number of columns
  106: *>     of the matrices B and X.  NRHS >= 0.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] A
  110: *> \verbatim
  111: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  112: *>     The original N-by-N matrix A.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDA
  116: *> \verbatim
  117: *>          LDA is INTEGER
  118: *>     The leading dimension of the array A.  LDA >= max(1,N).
  119: *> \endverbatim
  120: *>
  121: *> \param[in] AF
  122: *> \verbatim
  123: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
  124: *>     The factors L and U from the factorization A = P*L*U
  125: *>     as computed by DGETRF.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] LDAF
  129: *> \verbatim
  130: *>          LDAF is INTEGER
  131: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  132: *> \endverbatim
  133: *>
  134: *> \param[in] IPIV
  135: *> \verbatim
  136: *>          IPIV is INTEGER array, dimension (N)
  137: *>     The pivot indices from DGETRF; for 1<=i<=N, row i of the
  138: *>     matrix was interchanged with row IPIV(i).
  139: *> \endverbatim
  140: *>
  141: *> \param[in] R
  142: *> \verbatim
  143: *>          R is DOUBLE PRECISION array, dimension (N)
  144: *>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
  145: *>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  146: *>     is not accessed.
  147: *>     If R is accessed, each element of R should be a power of the radix
  148: *>     to ensure a reliable solution and error estimates. Scaling by
  149: *>     powers of the radix does not cause rounding errors unless the
  150: *>     result underflows or overflows. Rounding errors during scaling
  151: *>     lead to refining with a matrix that is not equivalent to the
  152: *>     input matrix, producing error estimates that may not be
  153: *>     reliable.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] C
  157: *> \verbatim
  158: *>          C is DOUBLE PRECISION array, dimension (N)
  159: *>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
  160: *>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  161: *>     is not accessed.
  162: *>     If C is accessed, each element of C should be a power of the radix
  163: *>     to ensure a reliable solution and error estimates. Scaling by
  164: *>     powers of the radix does not cause rounding errors unless the
  165: *>     result underflows or overflows. Rounding errors during scaling
  166: *>     lead to refining with a matrix that is not equivalent to the
  167: *>     input matrix, producing error estimates that may not be
  168: *>     reliable.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] B
  172: *> \verbatim
  173: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  174: *>     The right hand side matrix B.
  175: *> \endverbatim
  176: *>
  177: *> \param[in] LDB
  178: *> \verbatim
  179: *>          LDB is INTEGER
  180: *>     The leading dimension of the array B.  LDB >= max(1,N).
  181: *> \endverbatim
  182: *>
  183: *> \param[in,out] X
  184: *> \verbatim
  185: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  186: *>     On entry, the solution matrix X, as computed by DGETRS.
  187: *>     On exit, the improved solution matrix X.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] LDX
  191: *> \verbatim
  192: *>          LDX is INTEGER
  193: *>     The leading dimension of the array X.  LDX >= max(1,N).
  194: *> \endverbatim
  195: *>
  196: *> \param[out] RCOND
  197: *> \verbatim
  198: *>          RCOND is DOUBLE PRECISION
  199: *>     Reciprocal scaled condition number.  This is an estimate of the
  200: *>     reciprocal Skeel condition number of the matrix A after
  201: *>     equilibration (if done).  If this is less than the machine
  202: *>     precision (in particular, if it is zero), the matrix is singular
  203: *>     to working precision.  Note that the error may still be small even
  204: *>     if this number is very small and the matrix appears ill-
  205: *>     conditioned.
  206: *> \endverbatim
  207: *>
  208: *> \param[out] BERR
  209: *> \verbatim
  210: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  211: *>     Componentwise relative backward error.  This is the
  212: *>     componentwise relative backward error of each solution vector X(j)
  213: *>     (i.e., the smallest relative change in any element of A or B that
  214: *>     makes X(j) an exact solution).
  215: *> \endverbatim
  216: *>
  217: *> \param[in] N_ERR_BNDS
  218: *> \verbatim
  219: *>          N_ERR_BNDS is INTEGER
  220: *>     Number of error bounds to return for each right hand side
  221: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  222: *>     ERR_BNDS_COMP below.
  223: *> \endverbatim
  224: *>
  225: *> \param[out] ERR_BNDS_NORM
  226: *> \verbatim
  227: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  228: *>     For each right-hand side, this array contains information about
  229: *>     various error bounds and condition numbers corresponding to the
  230: *>     normwise relative error, which is defined as follows:
  231: *>
  232: *>     Normwise relative error in the ith solution vector:
  233: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  234: *>            ------------------------------
  235: *>                  max_j abs(X(j,i))
  236: *>
  237: *>     The array is indexed by the type of error information as described
  238: *>     below. There currently are up to three pieces of information
  239: *>     returned.
  240: *>
  241: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  242: *>     right-hand side.
  243: *>
  244: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  245: *>     three fields:
  246: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  247: *>              reciprocal condition number is less than the threshold
  248: *>              sqrt(n) * dlamch('Epsilon').
  249: *>
  250: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  251: *>              almost certainly within a factor of 10 of the true error
  252: *>              so long as the next entry is greater than the threshold
  253: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  254: *>              be trusted if the previous boolean is true.
  255: *>
  256: *>     err = 3  Reciprocal condition number: Estimated normwise
  257: *>              reciprocal condition number.  Compared with the threshold
  258: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  259: *>              estimate is "guaranteed". These reciprocal condition
  260: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  261: *>              appropriately scaled matrix Z.
  262: *>              Let Z = S*A, where S scales each row by a power of the
  263: *>              radix so all absolute row sums of Z are approximately 1.
  264: *>
  265: *>     See Lapack Working Note 165 for further details and extra
  266: *>     cautions.
  267: *> \endverbatim
  268: *>
  269: *> \param[out] ERR_BNDS_COMP
  270: *> \verbatim
  271: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  272: *>     For each right-hand side, this array contains information about
  273: *>     various error bounds and condition numbers corresponding to the
  274: *>     componentwise relative error, which is defined as follows:
  275: *>
  276: *>     Componentwise relative error in the ith solution vector:
  277: *>                    abs(XTRUE(j,i) - X(j,i))
  278: *>             max_j ----------------------
  279: *>                         abs(X(j,i))
  280: *>
  281: *>     The array is indexed by the right-hand side i (on which the
  282: *>     componentwise relative error depends), and the type of error
  283: *>     information as described below. There currently are up to three
  284: *>     pieces of information returned for each right-hand side. If
  285: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  286: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  287: *>     the first (:,N_ERR_BNDS) entries are returned.
  288: *>
  289: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  290: *>     right-hand side.
  291: *>
  292: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  293: *>     three fields:
  294: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  295: *>              reciprocal condition number is less than the threshold
  296: *>              sqrt(n) * dlamch('Epsilon').
  297: *>
  298: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  299: *>              almost certainly within a factor of 10 of the true error
  300: *>              so long as the next entry is greater than the threshold
  301: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  302: *>              be trusted if the previous boolean is true.
  303: *>
  304: *>     err = 3  Reciprocal condition number: Estimated componentwise
  305: *>              reciprocal condition number.  Compared with the threshold
  306: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  307: *>              estimate is "guaranteed". These reciprocal condition
  308: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  309: *>              appropriately scaled matrix Z.
  310: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  311: *>              current right-hand side and S scales each row of
  312: *>              A*diag(x) by a power of the radix so all absolute row
  313: *>              sums of Z are approximately 1.
  314: *>
  315: *>     See Lapack Working Note 165 for further details and extra
  316: *>     cautions.
  317: *> \endverbatim
  318: *>
  319: *> \param[in] NPARAMS
  320: *> \verbatim
  321: *>          NPARAMS is INTEGER
  322: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
  323: *>     PARAMS array is never referenced and default values are used.
  324: *> \endverbatim
  325: *>
  326: *> \param[in,out] PARAMS
  327: *> \verbatim
  328: *>          PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
  329: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
  330: *>     that entry will be filled with default value used for that
  331: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  332: *>     are used for higher-numbered parameters.
  333: *>
  334: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  335: *>            refinement or not.
  336: *>         Default: 1.0D+0
  337: *>            = 0.0:  No refinement is performed, and no error bounds are
  338: *>                    computed.
  339: *>            = 1.0:  Use the double-precision refinement algorithm,
  340: *>                    possibly with doubled-single computations if the
  341: *>                    compilation environment does not support DOUBLE
  342: *>                    PRECISION.
  343: *>              (other values are reserved for future use)
  344: *>
  345: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  346: *>            computations allowed for refinement.
  347: *>         Default: 10
  348: *>         Aggressive: Set to 100 to permit convergence using approximate
  349: *>                     factorizations or factorizations other than LU. If
  350: *>                     the factorization uses a technique other than
  351: *>                     Gaussian elimination, the guarantees in
  352: *>                     err_bnds_norm and err_bnds_comp may no longer be
  353: *>                     trustworthy.
  354: *>
  355: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  356: *>            will attempt to find a solution with small componentwise
  357: *>            relative error in the double-precision algorithm.  Positive
  358: *>            is true, 0.0 is false.
  359: *>         Default: 1.0 (attempt componentwise convergence)
  360: *> \endverbatim
  361: *>
  362: *> \param[out] WORK
  363: *> \verbatim
  364: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
  365: *> \endverbatim
  366: *>
  367: *> \param[out] IWORK
  368: *> \verbatim
  369: *>          IWORK is INTEGER array, dimension (N)
  370: *> \endverbatim
  371: *>
  372: *> \param[out] INFO
  373: *> \verbatim
  374: *>          INFO is INTEGER
  375: *>       = 0:  Successful exit. The solution to every right-hand side is
  376: *>         guaranteed.
  377: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  378: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  379: *>         has been completed, but the factor U is exactly singular, so
  380: *>         the solution and error bounds could not be computed. RCOND = 0
  381: *>         is returned.
  382: *>       = N+J: The solution corresponding to the Jth right-hand side is
  383: *>         not guaranteed. The solutions corresponding to other right-
  384: *>         hand sides K with K > J may not be guaranteed as well, but
  385: *>         only the first such right-hand side is reported. If a small
  386: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  387: *>         the Jth right-hand side is the first with a normwise error
  388: *>         bound that is not guaranteed (the smallest J such
  389: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  390: *>         the Jth right-hand side is the first with either a normwise or
  391: *>         componentwise error bound that is not guaranteed (the smallest
  392: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  393: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  394: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  395: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  396: *>         ERR_BNDS_COMP.
  397: *> \endverbatim
  398: *
  399: *  Authors:
  400: *  ========
  401: *
  402: *> \author Univ. of Tennessee
  403: *> \author Univ. of California Berkeley
  404: *> \author Univ. of Colorado Denver
  405: *> \author NAG Ltd.
  406: *
  407: *> \ingroup doubleGEcomputational
  408: *
  409: *  =====================================================================
  410:       SUBROUTINE DGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
  411:      $                    R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
  412:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  413:      $                    WORK, IWORK, INFO )
  414: *
  415: *  -- LAPACK computational routine --
  416: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  417: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  418: *
  419: *     .. Scalar Arguments ..
  420:       CHARACTER          TRANS, EQUED
  421:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  422:      $                   N_ERR_BNDS
  423:       DOUBLE PRECISION   RCOND
  424: *     ..
  425: *     .. Array Arguments ..
  426:       INTEGER            IPIV( * ), IWORK( * )
  427:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  428:      $                   X( LDX , * ), WORK( * )
  429:       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
  430:      $                   ERR_BNDS_NORM( NRHS, * ),
  431:      $                   ERR_BNDS_COMP( NRHS, * )
  432: *     ..
  433: *
  434: *  ==================================================================
  435: *
  436: *     .. Parameters ..
  437:       DOUBLE PRECISION   ZERO, ONE
  438:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  439:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
  440:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
  441:       DOUBLE PRECISION   DZTHRESH_DEFAULT
  442:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
  443:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
  444:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
  445:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
  446:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
  447:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  448:      $                   LA_LINRX_CWISE_I
  449:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  450:      $                   LA_LINRX_ITHRESH_I = 2 )
  451:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  452:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  453:      $                   LA_LINRX_RCOND_I
  454:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  455:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  456: *     ..
  457: *     .. Local Scalars ..
  458:       CHARACTER(1)       NORM
  459:       LOGICAL            ROWEQU, COLEQU, NOTRAN
  460:       INTEGER            J, TRANS_TYPE, PREC_TYPE, REF_TYPE
  461:       INTEGER            N_NORMS
  462:       DOUBLE PRECISION   ANORM, RCOND_TMP
  463:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
  464:       LOGICAL            IGNORE_CWISE
  465:       INTEGER            ITHRESH
  466:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
  467: *     ..
  468: *     .. External Subroutines ..
  469:       EXTERNAL           XERBLA, DGECON, DLA_GERFSX_EXTENDED
  470: *     ..
  471: *     .. Intrinsic Functions ..
  472:       INTRINSIC          MAX, SQRT
  473: *     ..
  474: *     .. External Functions ..
  475:       EXTERNAL           LSAME, ILATRANS, ILAPREC
  476:       EXTERNAL           DLAMCH, DLANGE, DLA_GERCOND
  477:       DOUBLE PRECISION   DLAMCH, DLANGE, DLA_GERCOND
  478:       LOGICAL            LSAME
  479:       INTEGER            ILATRANS, ILAPREC
  480: *     ..
  481: *     .. Executable Statements ..
  482: *
  483: *     Check the input parameters.
  484: *
  485:       INFO = 0
  486:       TRANS_TYPE = ILATRANS( TRANS )
  487:       REF_TYPE = INT( ITREF_DEFAULT )
  488:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
  489:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
  490:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
  491:          ELSE
  492:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
  493:          END IF
  494:       END IF
  495: *
  496: *     Set default parameters.
  497: *
  498:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
  499:       ITHRESH = INT( ITHRESH_DEFAULT )
  500:       RTHRESH = RTHRESH_DEFAULT
  501:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
  502:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
  503: *
  504:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
  505:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
  506:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
  507:          ELSE
  508:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
  509:          END IF
  510:       END IF
  511:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
  512:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
  513:             IF ( IGNORE_CWISE ) THEN
  514:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
  515:             ELSE
  516:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
  517:             END IF
  518:          ELSE
  519:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
  520:          END IF
  521:       END IF
  522:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
  523:          N_NORMS = 0
  524:       ELSE IF ( IGNORE_CWISE ) THEN
  525:          N_NORMS = 1
  526:       ELSE
  527:          N_NORMS = 2
  528:       END IF
  529: *
  530:       NOTRAN = LSAME( TRANS, 'N' )
  531:       ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  532:       COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  533: *
  534: *     Test input parameters.
  535: *
  536:       IF( TRANS_TYPE.EQ.-1 ) THEN
  537:         INFO = -1
  538:       ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND.
  539:      $         .NOT.LSAME( EQUED, 'N' ) ) THEN
  540:         INFO = -2
  541:       ELSE IF( N.LT.0 ) THEN
  542:         INFO = -3
  543:       ELSE IF( NRHS.LT.0 ) THEN
  544:         INFO = -4
  545:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  546:         INFO = -6
  547:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  548:         INFO = -8
  549:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  550:         INFO = -13
  551:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  552:         INFO = -15
  553:       END IF
  554:       IF( INFO.NE.0 ) THEN
  555:         CALL XERBLA( 'DGERFSX', -INFO )
  556:         RETURN
  557:       END IF
  558: *
  559: *     Quick return if possible.
  560: *
  561:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  562:          RCOND = 1.0D+0
  563:          DO J = 1, NRHS
  564:             BERR( J ) = 0.0D+0
  565:             IF ( N_ERR_BNDS .GE. 1 ) THEN
  566:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I) = 1.0D+0
  567:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  568:             END IF
  569:             IF ( N_ERR_BNDS .GE. 2 ) THEN
  570:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I) = 0.0D+0
  571:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
  572:             END IF
  573:             IF ( N_ERR_BNDS .GE. 3 ) THEN
  574:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I) = 1.0D+0
  575:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
  576:             END IF
  577:          END DO
  578:          RETURN
  579:       END IF
  580: *
  581: *     Default to failure.
  582: *
  583:       RCOND = 0.0D+0
  584:       DO J = 1, NRHS
  585:          BERR( J ) = 1.0D+0
  586:          IF ( N_ERR_BNDS .GE. 1 ) THEN
  587:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  588:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  589:          END IF
  590:          IF ( N_ERR_BNDS .GE. 2 ) THEN
  591:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  592:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  593:          END IF
  594:          IF ( N_ERR_BNDS .GE. 3 ) THEN
  595:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
  596:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
  597:          END IF
  598:       END DO
  599: *
  600: *     Compute the norm of A and the reciprocal of the condition
  601: *     number of A.
  602: *
  603:       IF( NOTRAN ) THEN
  604:          NORM = 'I'
  605:       ELSE
  606:          NORM = '1'
  607:       END IF
  608:       ANORM = DLANGE( NORM, N, N, A, LDA, WORK )
  609:       CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
  610: *
  611: *     Perform refinement on each right-hand side
  612: *
  613:       IF ( REF_TYPE .NE. 0 ) THEN
  614: 
  615:          PREC_TYPE = ILAPREC( 'E' )
  616: 
  617:          IF ( NOTRAN ) THEN
  618:             CALL DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N,
  619:      $           NRHS, A, LDA, AF, LDAF, IPIV, COLEQU, C, B,
  620:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
  621:      $           ERR_BNDS_COMP, WORK(N+1), WORK(1), WORK(2*N+1),
  622:      $           WORK(1), RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH,
  623:      $           IGNORE_CWISE, INFO )
  624:          ELSE
  625:             CALL DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N,
  626:      $           NRHS, A, LDA, AF, LDAF, IPIV, ROWEQU, R, B,
  627:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
  628:      $           ERR_BNDS_COMP, WORK(N+1), WORK(1), WORK(2*N+1),
  629:      $           WORK(1), RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH,
  630:      $           IGNORE_CWISE, INFO )
  631:          END IF
  632:       END IF
  633: 
  634:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
  635:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
  636: *
  637: *     Compute scaled normwise condition number cond(A*C).
  638: *
  639:          IF ( COLEQU .AND. NOTRAN ) THEN
  640:             RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF, IPIV,
  641:      $           -1, C, INFO, WORK, IWORK )
  642:          ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN
  643:             RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF, IPIV,
  644:      $           -1, R, INFO, WORK, IWORK )
  645:          ELSE
  646:             RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF, IPIV,
  647:      $           0, R, INFO, WORK, IWORK )
  648:          END IF
  649:          DO J = 1, NRHS
  650: *
  651: *     Cap the error at 1.0.
  652: *
  653:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  654:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  655:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  656: *
  657: *     Threshold the error (see LAWN).
  658: *
  659:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  660:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  661:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
  662:                IF ( INFO .LE. N ) INFO = N + J
  663:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
  664:      $     THEN
  665:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
  666:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  667:             END IF
  668: *
  669: *     Save the condition number.
  670: *
  671:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  672:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  673:             END IF
  674:          END DO
  675:       END IF
  676: 
  677:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
  678: *
  679: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
  680: *     each right-hand side using the current solution as an estimate of
  681: *     the true solution.  If the componentwise error estimate is too
  682: *     large, then the solution is a lousy estimate of truth and the
  683: *     estimated RCOND may be too optimistic.  To avoid misleading users,
  684: *     the inverse condition number is set to 0.0 when the estimated
  685: *     cwise error is at least CWISE_WRONG.
  686: *
  687:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
  688:          DO J = 1, NRHS
  689:             IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
  690:      $           THEN
  691:                RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF,
  692:      $              IPIV, 1, X(1,J), INFO, WORK, IWORK )
  693:             ELSE
  694:                RCOND_TMP = 0.0D+0
  695:             END IF
  696: *
  697: *     Cap the error at 1.0.
  698: *
  699:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  700:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  701:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  702: *
  703: *     Threshold the error (see LAWN).
  704: *
  705:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  706:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  707:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
  708:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
  709:      $              .AND. INFO.LT.N + J ) INFO = N + J
  710:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
  711:      $              .LT. ERR_LBND ) THEN
  712:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
  713:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  714:             END IF
  715: *
  716: *     Save the condition number.
  717: *
  718:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  719:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  720:             END IF
  721:          END DO
  722:       END IF
  723: *
  724:       RETURN
  725: *
  726: *     End of DGERFSX
  727: *
  728:       END

CVSweb interface <joel.bertrand@systella.fr>