Annotation of rpl/lapack/lapack/dgerfsx.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
                      2:      $                    R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
                      3:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                      4:      $                    WORK, IWORK, INFO )
                      5: *
                      6: *     -- LAPACK routine (version 3.2.2)                                 --
                      7: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
                      8: *     -- Jason Riedy of Univ. of California Berkeley.                 --
                      9: *     -- June 2010                                                    --
                     10: *
                     11: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
                     12: *     -- Univ. of California Berkeley and NAG Ltd.                    --
                     13: *
                     14:       IMPLICIT NONE
                     15: *     ..
                     16: *     .. Scalar Arguments ..
                     17:       CHARACTER          TRANS, EQUED
                     18:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                     19:      $                   N_ERR_BNDS
                     20:       DOUBLE PRECISION   RCOND
                     21: *     ..
                     22: *     .. Array Arguments ..
                     23:       INTEGER            IPIV( * ), IWORK( * )
                     24:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     25:      $                   X( LDX , * ), WORK( * )
                     26:       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
                     27:      $                   ERR_BNDS_NORM( NRHS, * ),
                     28:      $                   ERR_BNDS_COMP( NRHS, * )
                     29: *     ..
                     30: *
                     31: *     Purpose
                     32: *     =======
                     33: *
                     34: *     DGERFSX improves the computed solution to a system of linear
                     35: *     equations and provides error bounds and backward error estimates
                     36: *     for the solution.  In addition to normwise error bound, the code
                     37: *     provides maximum componentwise error bound if possible.  See
                     38: *     comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
                     39: *     error bounds.
                     40: *
                     41: *     The original system of linear equations may have been equilibrated
                     42: *     before calling this routine, as described by arguments EQUED, R
                     43: *     and C below. In this case, the solution and error bounds returned
                     44: *     are for the original unequilibrated system.
                     45: *
                     46: *     Arguments
                     47: *     =========
                     48: *
                     49: *     Some optional parameters are bundled in the PARAMS array.  These
                     50: *     settings determine how refinement is performed, but often the
                     51: *     defaults are acceptable.  If the defaults are acceptable, users
                     52: *     can pass NPARAMS = 0 which prevents the source code from accessing
                     53: *     the PARAMS argument.
                     54: *
                     55: *     TRANS   (input) CHARACTER*1
                     56: *     Specifies the form of the system of equations:
                     57: *       = 'N':  A * X = B     (No transpose)
                     58: *       = 'T':  A**T * X = B  (Transpose)
                     59: *       = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
                     60: *
                     61: *     EQUED   (input) CHARACTER*1
                     62: *     Specifies the form of equilibration that was done to A
                     63: *     before calling this routine. This is needed to compute
                     64: *     the solution and error bounds correctly.
                     65: *       = 'N':  No equilibration
                     66: *       = 'R':  Row equilibration, i.e., A has been premultiplied by
                     67: *               diag(R).
                     68: *       = 'C':  Column equilibration, i.e., A has been postmultiplied
                     69: *               by diag(C).
                     70: *       = 'B':  Both row and column equilibration, i.e., A has been
                     71: *               replaced by diag(R) * A * diag(C).
                     72: *               The right hand side B has been changed accordingly.
                     73: *
                     74: *     N       (input) INTEGER
                     75: *     The order of the matrix A.  N >= 0.
                     76: *
                     77: *     NRHS    (input) INTEGER
                     78: *     The number of right hand sides, i.e., the number of columns
                     79: *     of the matrices B and X.  NRHS >= 0.
                     80: *
                     81: *     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
                     82: *     The original N-by-N matrix A.
                     83: *
                     84: *     LDA     (input) INTEGER
                     85: *     The leading dimension of the array A.  LDA >= max(1,N).
                     86: *
                     87: *     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
                     88: *     The factors L and U from the factorization A = P*L*U
                     89: *     as computed by DGETRF.
                     90: *
                     91: *     LDAF    (input) INTEGER
                     92: *     The leading dimension of the array AF.  LDAF >= max(1,N).
                     93: *
                     94: *     IPIV    (input) INTEGER array, dimension (N)
                     95: *     The pivot indices from DGETRF; for 1<=i<=N, row i of the
                     96: *     matrix was interchanged with row IPIV(i).
                     97: *
                     98: *     R       (input) DOUBLE PRECISION array, dimension (N)
                     99: *     The row scale factors for A.  If EQUED = 'R' or 'B', A is
                    100: *     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
                    101: *     is not accessed.  
                    102: *     If R is accessed, each element of R should be a power of the radix
                    103: *     to ensure a reliable solution and error estimates. Scaling by
                    104: *     powers of the radix does not cause rounding errors unless the
                    105: *     result underflows or overflows. Rounding errors during scaling
                    106: *     lead to refining with a matrix that is not equivalent to the
                    107: *     input matrix, producing error estimates that may not be
                    108: *     reliable.
                    109: *
                    110: *     C       (input) DOUBLE PRECISION array, dimension (N)
                    111: *     The column scale factors for A.  If EQUED = 'C' or 'B', A is
                    112: *     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
                    113: *     is not accessed. 
                    114: *     If C is accessed, each element of C should be a power of the radix
                    115: *     to ensure a reliable solution and error estimates. Scaling by
                    116: *     powers of the radix does not cause rounding errors unless the
                    117: *     result underflows or overflows. Rounding errors during scaling
                    118: *     lead to refining with a matrix that is not equivalent to the
                    119: *     input matrix, producing error estimates that may not be
                    120: *     reliable.
                    121: *
                    122: *     B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
                    123: *     The right hand side matrix B.
                    124: *
                    125: *     LDB     (input) INTEGER
                    126: *     The leading dimension of the array B.  LDB >= max(1,N).
                    127: *
                    128: *     X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
                    129: *     On entry, the solution matrix X, as computed by DGETRS.
                    130: *     On exit, the improved solution matrix X.
                    131: *
                    132: *     LDX     (input) INTEGER
                    133: *     The leading dimension of the array X.  LDX >= max(1,N).
                    134: *
                    135: *     RCOND   (output) DOUBLE PRECISION
                    136: *     Reciprocal scaled condition number.  This is an estimate of the
                    137: *     reciprocal Skeel condition number of the matrix A after
                    138: *     equilibration (if done).  If this is less than the machine
                    139: *     precision (in particular, if it is zero), the matrix is singular
                    140: *     to working precision.  Note that the error may still be small even
                    141: *     if this number is very small and the matrix appears ill-
                    142: *     conditioned.
                    143: *
                    144: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    145: *     Componentwise relative backward error.  This is the
                    146: *     componentwise relative backward error of each solution vector X(j)
                    147: *     (i.e., the smallest relative change in any element of A or B that
                    148: *     makes X(j) an exact solution).
                    149: *
                    150: *     N_ERR_BNDS (input) INTEGER
                    151: *     Number of error bounds to return for each right hand side
                    152: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
                    153: *     ERR_BNDS_COMP below.
                    154: *
                    155: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    156: *     For each right-hand side, this array contains information about
                    157: *     various error bounds and condition numbers corresponding to the
                    158: *     normwise relative error, which is defined as follows:
                    159: *
                    160: *     Normwise relative error in the ith solution vector:
                    161: *             max_j (abs(XTRUE(j,i) - X(j,i)))
                    162: *            ------------------------------
                    163: *                  max_j abs(X(j,i))
                    164: *
                    165: *     The array is indexed by the type of error information as described
                    166: *     below. There currently are up to three pieces of information
                    167: *     returned.
                    168: *
                    169: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    170: *     right-hand side.
                    171: *
                    172: *     The second index in ERR_BNDS_NORM(:,err) contains the following
                    173: *     three fields:
                    174: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    175: *              reciprocal condition number is less than the threshold
                    176: *              sqrt(n) * dlamch('Epsilon').
                    177: *
                    178: *     err = 2 "Guaranteed" error bound: The estimated forward error,
                    179: *              almost certainly within a factor of 10 of the true error
                    180: *              so long as the next entry is greater than the threshold
                    181: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    182: *              be trusted if the previous boolean is true.
                    183: *
                    184: *     err = 3  Reciprocal condition number: Estimated normwise
                    185: *              reciprocal condition number.  Compared with the threshold
                    186: *              sqrt(n) * dlamch('Epsilon') to determine if the error
                    187: *              estimate is "guaranteed". These reciprocal condition
                    188: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    189: *              appropriately scaled matrix Z.
                    190: *              Let Z = S*A, where S scales each row by a power of the
                    191: *              radix so all absolute row sums of Z are approximately 1.
                    192: *
                    193: *     See Lapack Working Note 165 for further details and extra
                    194: *     cautions.
                    195: *
                    196: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    197: *     For each right-hand side, this array contains information about
                    198: *     various error bounds and condition numbers corresponding to the
                    199: *     componentwise relative error, which is defined as follows:
                    200: *
                    201: *     Componentwise relative error in the ith solution vector:
                    202: *                    abs(XTRUE(j,i) - X(j,i))
                    203: *             max_j ----------------------
                    204: *                         abs(X(j,i))
                    205: *
                    206: *     The array is indexed by the right-hand side i (on which the
                    207: *     componentwise relative error depends), and the type of error
                    208: *     information as described below. There currently are up to three
                    209: *     pieces of information returned for each right-hand side. If
                    210: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    211: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    212: *     the first (:,N_ERR_BNDS) entries are returned.
                    213: *
                    214: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    215: *     right-hand side.
                    216: *
                    217: *     The second index in ERR_BNDS_COMP(:,err) contains the following
                    218: *     three fields:
                    219: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    220: *              reciprocal condition number is less than the threshold
                    221: *              sqrt(n) * dlamch('Epsilon').
                    222: *
                    223: *     err = 2 "Guaranteed" error bound: The estimated forward error,
                    224: *              almost certainly within a factor of 10 of the true error
                    225: *              so long as the next entry is greater than the threshold
                    226: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    227: *              be trusted if the previous boolean is true.
                    228: *
                    229: *     err = 3  Reciprocal condition number: Estimated componentwise
                    230: *              reciprocal condition number.  Compared with the threshold
                    231: *              sqrt(n) * dlamch('Epsilon') to determine if the error
                    232: *              estimate is "guaranteed". These reciprocal condition
                    233: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    234: *              appropriately scaled matrix Z.
                    235: *              Let Z = S*(A*diag(x)), where x is the solution for the
                    236: *              current right-hand side and S scales each row of
                    237: *              A*diag(x) by a power of the radix so all absolute row
                    238: *              sums of Z are approximately 1.
                    239: *
                    240: *     See Lapack Working Note 165 for further details and extra
                    241: *     cautions.
                    242: *
                    243: *     NPARAMS (input) INTEGER
                    244: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
                    245: *     PARAMS array is never referenced and default values are used.
                    246: *
                    247: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension (NPARAMS)
                    248: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
                    249: *     that entry will be filled with default value used for that
                    250: *     parameter.  Only positions up to NPARAMS are accessed; defaults
                    251: *     are used for higher-numbered parameters.
                    252: *
                    253: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
                    254: *            refinement or not.
                    255: *         Default: 1.0D+0
                    256: *            = 0.0 : No refinement is performed, and no error bounds are
                    257: *                    computed.
                    258: *            = 1.0 : Use the double-precision refinement algorithm,
                    259: *                    possibly with doubled-single computations if the
                    260: *                    compilation environment does not support DOUBLE
                    261: *                    PRECISION.
                    262: *              (other values are reserved for future use)
                    263: *
                    264: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
                    265: *            computations allowed for refinement.
                    266: *         Default: 10
                    267: *         Aggressive: Set to 100 to permit convergence using approximate
                    268: *                     factorizations or factorizations other than LU. If
                    269: *                     the factorization uses a technique other than
                    270: *                     Gaussian elimination, the guarantees in
                    271: *                     err_bnds_norm and err_bnds_comp may no longer be
                    272: *                     trustworthy.
                    273: *
                    274: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
                    275: *            will attempt to find a solution with small componentwise
                    276: *            relative error in the double-precision algorithm.  Positive
                    277: *            is true, 0.0 is false.
                    278: *         Default: 1.0 (attempt componentwise convergence)
                    279: *
                    280: *     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)
                    281: *
                    282: *     IWORK   (workspace) INTEGER array, dimension (N)
                    283: *
                    284: *     INFO    (output) INTEGER
                    285: *       = 0:  Successful exit. The solution to every right-hand side is
                    286: *         guaranteed.
                    287: *       < 0:  If INFO = -i, the i-th argument had an illegal value
                    288: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
                    289: *         has been completed, but the factor U is exactly singular, so
                    290: *         the solution and error bounds could not be computed. RCOND = 0
                    291: *         is returned.
                    292: *       = N+J: The solution corresponding to the Jth right-hand side is
                    293: *         not guaranteed. The solutions corresponding to other right-
                    294: *         hand sides K with K > J may not be guaranteed as well, but
                    295: *         only the first such right-hand side is reported. If a small
                    296: *         componentwise error is not requested (PARAMS(3) = 0.0) then
                    297: *         the Jth right-hand side is the first with a normwise error
                    298: *         bound that is not guaranteed (the smallest J such
                    299: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
                    300: *         the Jth right-hand side is the first with either a normwise or
                    301: *         componentwise error bound that is not guaranteed (the smallest
                    302: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
                    303: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
                    304: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
                    305: *         about all of the right-hand sides check ERR_BNDS_NORM or
                    306: *         ERR_BNDS_COMP.
                    307: *
                    308: *     ==================================================================
                    309: *
                    310: *     .. Parameters ..
                    311:       DOUBLE PRECISION   ZERO, ONE
                    312:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    313:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
                    314:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
                    315:       DOUBLE PRECISION   DZTHRESH_DEFAULT
                    316:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
                    317:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
                    318:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
                    319:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
                    320:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
                    321:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    322:      $                   LA_LINRX_CWISE_I
                    323:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    324:      $                   LA_LINRX_ITHRESH_I = 2 )
                    325:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    326:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    327:      $                   LA_LINRX_RCOND_I
                    328:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    329:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    330: *     ..
                    331: *     .. Local Scalars ..
                    332:       CHARACTER(1)       NORM
                    333:       LOGICAL            ROWEQU, COLEQU, NOTRAN
                    334:       INTEGER            J, TRANS_TYPE, PREC_TYPE, REF_TYPE
                    335:       INTEGER            N_NORMS
                    336:       DOUBLE PRECISION   ANORM, RCOND_TMP
                    337:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
                    338:       LOGICAL            IGNORE_CWISE
                    339:       INTEGER            ITHRESH
                    340:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
                    341: *     ..
                    342: *     .. External Subroutines ..
                    343:       EXTERNAL           XERBLA, DGECON, DLA_GERFSX_EXTENDED
                    344: *     ..
                    345: *     .. Intrinsic Functions ..
                    346:       INTRINSIC          MAX, SQRT
                    347: *     ..
                    348: *     .. External Functions ..
                    349:       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
                    350:       EXTERNAL           DLAMCH, DLANGE, DLA_GERCOND
                    351:       DOUBLE PRECISION   DLAMCH, DLANGE, DLA_GERCOND
                    352:       LOGICAL            LSAME
                    353:       INTEGER            BLAS_FPINFO_X
                    354:       INTEGER            ILATRANS, ILAPREC
                    355: *     ..
                    356: *     .. Executable Statements ..
                    357: *
                    358: *     Check the input parameters.
                    359: *
                    360:       INFO = 0
                    361:       TRANS_TYPE = ILATRANS( TRANS )
                    362:       REF_TYPE = INT( ITREF_DEFAULT )
                    363:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
                    364:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
                    365:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
                    366:          ELSE
                    367:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
                    368:          END IF
                    369:       END IF
                    370: *
                    371: *     Set default parameters.
                    372: *
                    373:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
                    374:       ITHRESH = INT( ITHRESH_DEFAULT )
                    375:       RTHRESH = RTHRESH_DEFAULT
                    376:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
                    377:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
                    378: *
                    379:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
                    380:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
                    381:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
                    382:          ELSE
                    383:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
                    384:          END IF
                    385:       END IF
                    386:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
                    387:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
                    388:             IF ( IGNORE_CWISE ) THEN
                    389:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
                    390:             ELSE
                    391:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
                    392:             END IF
                    393:          ELSE
                    394:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
                    395:          END IF
                    396:       END IF
                    397:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
                    398:          N_NORMS = 0
                    399:       ELSE IF ( IGNORE_CWISE ) THEN
                    400:          N_NORMS = 1
                    401:       ELSE
                    402:          N_NORMS = 2
                    403:       END IF
                    404: *
                    405:       NOTRAN = LSAME( TRANS, 'N' )
                    406:       ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    407:       COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    408: *
                    409: *     Test input parameters.
                    410: *
                    411:       IF( TRANS_TYPE.EQ.-1 ) THEN
                    412:         INFO = -1
                    413:       ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND.
                    414:      $         .NOT.LSAME( EQUED, 'N' ) ) THEN
                    415:         INFO = -2
                    416:       ELSE IF( N.LT.0 ) THEN
                    417:         INFO = -3
                    418:       ELSE IF( NRHS.LT.0 ) THEN
                    419:         INFO = -4
                    420:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    421:         INFO = -6
                    422:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    423:         INFO = -8
                    424:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    425:         INFO = -13
                    426:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    427:         INFO = -15
                    428:       END IF
                    429:       IF( INFO.NE.0 ) THEN
                    430:         CALL XERBLA( 'DGERFSX', -INFO )
                    431:         RETURN
                    432:       END IF
                    433: *
                    434: *     Quick return if possible.
                    435: *
                    436:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    437:          RCOND = 1.0D+0
                    438:          DO J = 1, NRHS
                    439:             BERR( J ) = 0.0D+0
                    440:             IF ( N_ERR_BNDS .GE. 1 ) THEN
                    441:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I) = 1.0D+0
                    442:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    443:             END IF
                    444:             IF ( N_ERR_BNDS .GE. 2 ) THEN
                    445:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I) = 0.0D+0
                    446:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
                    447:             END IF
                    448:             IF ( N_ERR_BNDS .GE. 3 ) THEN
                    449:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I) = 1.0D+0
                    450:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    451:             END IF
                    452:          END DO
                    453:          RETURN
                    454:       END IF
                    455: *
                    456: *     Default to failure.
                    457: *
                    458:       RCOND = 0.0D+0
                    459:       DO J = 1, NRHS
                    460:          BERR( J ) = 1.0D+0
                    461:          IF ( N_ERR_BNDS .GE. 1 ) THEN
                    462:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    463:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    464:          END IF
                    465:          IF ( N_ERR_BNDS .GE. 2 ) THEN
                    466:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    467:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    468:          END IF
                    469:          IF ( N_ERR_BNDS .GE. 3 ) THEN
                    470:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    471:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    472:          END IF
                    473:       END DO
                    474: *
                    475: *     Compute the norm of A and the reciprocal of the condition
                    476: *     number of A.
                    477: *
                    478:       IF( NOTRAN ) THEN
                    479:          NORM = 'I'
                    480:       ELSE
                    481:          NORM = '1'
                    482:       END IF
                    483:       ANORM = DLANGE( NORM, N, N, A, LDA, WORK )
                    484:       CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
                    485: *
                    486: *     Perform refinement on each right-hand side
                    487: *
                    488:       IF ( REF_TYPE .NE. 0 ) THEN
                    489: 
                    490:          PREC_TYPE = ILAPREC( 'E' )
                    491: 
                    492:          IF ( NOTRAN ) THEN
                    493:             CALL DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N,
                    494:      $           NRHS, A, LDA, AF, LDAF, IPIV, COLEQU, C, B,
                    495:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
                    496:      $           ERR_BNDS_COMP, WORK(N+1), WORK(1), WORK(2*N+1),
                    497:      $           WORK(1), RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH,
                    498:      $           IGNORE_CWISE, INFO )
                    499:          ELSE
                    500:             CALL DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N,
                    501:      $           NRHS, A, LDA, AF, LDAF, IPIV, ROWEQU, R, B,
                    502:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
                    503:      $           ERR_BNDS_COMP, WORK(N+1), WORK(1), WORK(2*N+1),
                    504:      $           WORK(1), RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH,
                    505:      $           IGNORE_CWISE, INFO )
                    506:          END IF
                    507:       END IF
                    508: 
                    509:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
                    510:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
                    511: *
                    512: *     Compute scaled normwise condition number cond(A*C).
                    513: *
                    514:          IF ( COLEQU .AND. NOTRAN ) THEN
                    515:             RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF, IPIV,
                    516:      $           -1, C, INFO, WORK, IWORK )
                    517:          ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN
                    518:             RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF, IPIV,
                    519:      $           -1, R, INFO, WORK, IWORK )
                    520:          ELSE
                    521:             RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF, IPIV,
                    522:      $           0, R, INFO, WORK, IWORK )
                    523:          END IF
                    524:          DO J = 1, NRHS
                    525: *
                    526: *     Cap the error at 1.0.
                    527: *
                    528:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    529:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    530:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    531: *
                    532: *     Threshold the error (see LAWN).
                    533: *
                    534:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    535:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    536:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    537:                IF ( INFO .LE. N ) INFO = N + J
                    538:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
                    539:      $     THEN
                    540:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
                    541:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    542:             END IF
                    543: *
                    544: *     Save the condition number.
                    545: *
                    546:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    547:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    548:             END IF
                    549:          END DO
                    550:       END IF
                    551: 
                    552:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
                    553: *
                    554: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
                    555: *     each right-hand side using the current solution as an estimate of
                    556: *     the true solution.  If the componentwise error estimate is too
                    557: *     large, then the solution is a lousy estimate of truth and the
                    558: *     estimated RCOND may be too optimistic.  To avoid misleading users,
                    559: *     the inverse condition number is set to 0.0 when the estimated
                    560: *     cwise error is at least CWISE_WRONG.
                    561: *
                    562:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
                    563:          DO J = 1, NRHS
                    564:             IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
                    565:      $           THEN
                    566:                RCOND_TMP = DLA_GERCOND( TRANS, N, A, LDA, AF, LDAF,
                    567:      $              IPIV, 1, X(1,J), INFO, WORK, IWORK )
                    568:             ELSE
                    569:                RCOND_TMP = 0.0D+0
                    570:             END IF
                    571: *
                    572: *     Cap the error at 1.0.
                    573: *
                    574:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    575:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    576:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    577: *
                    578: *     Threshold the error (see LAWN).
                    579: *
                    580:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    581:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    582:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    583:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
                    584:      $              .AND. INFO.LT.N + J ) INFO = N + J
                    585:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
                    586:      $              .LT. ERR_LBND ) THEN
                    587:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
                    588:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    589:             END IF
                    590: *
                    591: *     Save the condition number.
                    592: *
                    593:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    594:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    595:             END IF
                    596:          END DO
                    597:       END IF
                    598: *
                    599:       RETURN
                    600: *
                    601: *     End of DGERFSX
                    602: *
                    603:       END

CVSweb interface <joel.bertrand@systella.fr>