Annotation of rpl/lapack/lapack/dgerfs.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                      2:      $                   X, LDX, FERR, BERR, WORK, IWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          TRANS
                     13:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IPIV( * ), IWORK( * )
                     17:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     18:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  DGERFS improves the computed solution to a system of linear
                     25: *  equations and provides error bounds and backward error estimates for
                     26: *  the solution.
                     27: *
                     28: *  Arguments
                     29: *  =========
                     30: *
                     31: *  TRANS   (input) CHARACTER*1
                     32: *          Specifies the form of the system of equations:
                     33: *          = 'N':  A * X = B     (No transpose)
                     34: *          = 'T':  A**T * X = B  (Transpose)
                     35: *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
                     36: *
                     37: *  N       (input) INTEGER
                     38: *          The order of the matrix A.  N >= 0.
                     39: *
                     40: *  NRHS    (input) INTEGER
                     41: *          The number of right hand sides, i.e., the number of columns
                     42: *          of the matrices B and X.  NRHS >= 0.
                     43: *
                     44: *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
                     45: *          The original N-by-N matrix A.
                     46: *
                     47: *  LDA     (input) INTEGER
                     48: *          The leading dimension of the array A.  LDA >= max(1,N).
                     49: *
                     50: *  AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
                     51: *          The factors L and U from the factorization A = P*L*U
                     52: *          as computed by DGETRF.
                     53: *
                     54: *  LDAF    (input) INTEGER
                     55: *          The leading dimension of the array AF.  LDAF >= max(1,N).
                     56: *
                     57: *  IPIV    (input) INTEGER array, dimension (N)
                     58: *          The pivot indices from DGETRF; for 1<=i<=N, row i of the
                     59: *          matrix was interchanged with row IPIV(i).
                     60: *
                     61: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     62: *          The right hand side matrix B.
                     63: *
                     64: *  LDB     (input) INTEGER
                     65: *          The leading dimension of the array B.  LDB >= max(1,N).
                     66: *
                     67: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
                     68: *          On entry, the solution matrix X, as computed by DGETRS.
                     69: *          On exit, the improved solution matrix X.
                     70: *
                     71: *  LDX     (input) INTEGER
                     72: *          The leading dimension of the array X.  LDX >= max(1,N).
                     73: *
                     74: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     75: *          The estimated forward error bound for each solution vector
                     76: *          X(j) (the j-th column of the solution matrix X).
                     77: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                     78: *          is an estimated upper bound for the magnitude of the largest
                     79: *          element in (X(j) - XTRUE) divided by the magnitude of the
                     80: *          largest element in X(j).  The estimate is as reliable as
                     81: *          the estimate for RCOND, and is almost always a slight
                     82: *          overestimate of the true error.
                     83: *
                     84: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     85: *          The componentwise relative backward error of each solution
                     86: *          vector X(j) (i.e., the smallest relative change in
                     87: *          any element of A or B that makes X(j) an exact solution).
                     88: *
                     89: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
                     90: *
                     91: *  IWORK   (workspace) INTEGER array, dimension (N)
                     92: *
                     93: *  INFO    (output) INTEGER
                     94: *          = 0:  successful exit
                     95: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     96: *
                     97: *  Internal Parameters
                     98: *  ===================
                     99: *
                    100: *  ITMAX is the maximum number of steps of iterative refinement.
                    101: *
                    102: *  =====================================================================
                    103: *
                    104: *     .. Parameters ..
                    105:       INTEGER            ITMAX
                    106:       PARAMETER          ( ITMAX = 5 )
                    107:       DOUBLE PRECISION   ZERO
                    108:       PARAMETER          ( ZERO = 0.0D+0 )
                    109:       DOUBLE PRECISION   ONE
                    110:       PARAMETER          ( ONE = 1.0D+0 )
                    111:       DOUBLE PRECISION   TWO
                    112:       PARAMETER          ( TWO = 2.0D+0 )
                    113:       DOUBLE PRECISION   THREE
                    114:       PARAMETER          ( THREE = 3.0D+0 )
                    115: *     ..
                    116: *     .. Local Scalars ..
                    117:       LOGICAL            NOTRAN
                    118:       CHARACTER          TRANST
                    119:       INTEGER            COUNT, I, J, K, KASE, NZ
                    120:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    121: *     ..
                    122: *     .. Local Arrays ..
                    123:       INTEGER            ISAVE( 3 )
                    124: *     ..
                    125: *     .. External Subroutines ..
                    126:       EXTERNAL           DAXPY, DCOPY, DGEMV, DGETRS, DLACN2, XERBLA
                    127: *     ..
                    128: *     .. Intrinsic Functions ..
                    129:       INTRINSIC          ABS, MAX
                    130: *     ..
                    131: *     .. External Functions ..
                    132:       LOGICAL            LSAME
                    133:       DOUBLE PRECISION   DLAMCH
                    134:       EXTERNAL           LSAME, DLAMCH
                    135: *     ..
                    136: *     .. Executable Statements ..
                    137: *
                    138: *     Test the input parameters.
                    139: *
                    140:       INFO = 0
                    141:       NOTRAN = LSAME( TRANS, 'N' )
                    142:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    143:      $    LSAME( TRANS, 'C' ) ) THEN
                    144:          INFO = -1
                    145:       ELSE IF( N.LT.0 ) THEN
                    146:          INFO = -2
                    147:       ELSE IF( NRHS.LT.0 ) THEN
                    148:          INFO = -3
                    149:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    150:          INFO = -5
                    151:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    152:          INFO = -7
                    153:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    154:          INFO = -10
                    155:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    156:          INFO = -12
                    157:       END IF
                    158:       IF( INFO.NE.0 ) THEN
                    159:          CALL XERBLA( 'DGERFS', -INFO )
                    160:          RETURN
                    161:       END IF
                    162: *
                    163: *     Quick return if possible
                    164: *
                    165:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    166:          DO 10 J = 1, NRHS
                    167:             FERR( J ) = ZERO
                    168:             BERR( J ) = ZERO
                    169:    10    CONTINUE
                    170:          RETURN
                    171:       END IF
                    172: *
                    173:       IF( NOTRAN ) THEN
                    174:          TRANST = 'T'
                    175:       ELSE
                    176:          TRANST = 'N'
                    177:       END IF
                    178: *
                    179: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    180: *
                    181:       NZ = N + 1
                    182:       EPS = DLAMCH( 'Epsilon' )
                    183:       SAFMIN = DLAMCH( 'Safe minimum' )
                    184:       SAFE1 = NZ*SAFMIN
                    185:       SAFE2 = SAFE1 / EPS
                    186: *
                    187: *     Do for each right hand side
                    188: *
                    189:       DO 140 J = 1, NRHS
                    190: *
                    191:          COUNT = 1
                    192:          LSTRES = THREE
                    193:    20    CONTINUE
                    194: *
                    195: *        Loop until stopping criterion is satisfied.
                    196: *
                    197: *        Compute residual R = B - op(A) * X,
                    198: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    199: *
                    200:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    201:          CALL DGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
                    202:      $               WORK( N+1 ), 1 )
                    203: *
                    204: *        Compute componentwise relative backward error from formula
                    205: *
                    206: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    207: *
                    208: *        where abs(Z) is the componentwise absolute value of the matrix
                    209: *        or vector Z.  If the i-th component of the denominator is less
                    210: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    211: *        numerator and denominator before dividing.
                    212: *
                    213:          DO 30 I = 1, N
                    214:             WORK( I ) = ABS( B( I, J ) )
                    215:    30    CONTINUE
                    216: *
                    217: *        Compute abs(op(A))*abs(X) + abs(B).
                    218: *
                    219:          IF( NOTRAN ) THEN
                    220:             DO 50 K = 1, N
                    221:                XK = ABS( X( K, J ) )
                    222:                DO 40 I = 1, N
                    223:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
                    224:    40          CONTINUE
                    225:    50       CONTINUE
                    226:          ELSE
                    227:             DO 70 K = 1, N
                    228:                S = ZERO
                    229:                DO 60 I = 1, N
                    230:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
                    231:    60          CONTINUE
                    232:                WORK( K ) = WORK( K ) + S
                    233:    70       CONTINUE
                    234:          END IF
                    235:          S = ZERO
                    236:          DO 80 I = 1, N
                    237:             IF( WORK( I ).GT.SAFE2 ) THEN
                    238:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    239:             ELSE
                    240:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    241:      $             ( WORK( I )+SAFE1 ) )
                    242:             END IF
                    243:    80    CONTINUE
                    244:          BERR( J ) = S
                    245: *
                    246: *        Test stopping criterion. Continue iterating if
                    247: *           1) The residual BERR(J) is larger than machine epsilon, and
                    248: *           2) BERR(J) decreased by at least a factor of 2 during the
                    249: *              last iteration, and
                    250: *           3) At most ITMAX iterations tried.
                    251: *
                    252:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    253:      $       COUNT.LE.ITMAX ) THEN
                    254: *
                    255: *           Update solution and try again.
                    256: *
                    257:             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
                    258:      $                   INFO )
                    259:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    260:             LSTRES = BERR( J )
                    261:             COUNT = COUNT + 1
                    262:             GO TO 20
                    263:          END IF
                    264: *
                    265: *        Bound error from formula
                    266: *
                    267: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    268: *        norm( abs(inv(op(A)))*
                    269: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    270: *
                    271: *        where
                    272: *          norm(Z) is the magnitude of the largest component of Z
                    273: *          inv(op(A)) is the inverse of op(A)
                    274: *          abs(Z) is the componentwise absolute value of the matrix or
                    275: *             vector Z
                    276: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    277: *          EPS is machine epsilon
                    278: *
                    279: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    280: *        is incremented by SAFE1 if the i-th component of
                    281: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    282: *
                    283: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    284: *           inv(op(A)) * diag(W),
                    285: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    286: *
                    287:          DO 90 I = 1, N
                    288:             IF( WORK( I ).GT.SAFE2 ) THEN
                    289:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    290:             ELSE
                    291:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    292:             END IF
                    293:    90    CONTINUE
                    294: *
                    295:          KASE = 0
                    296:   100    CONTINUE
                    297:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    298:      $                KASE, ISAVE )
                    299:          IF( KASE.NE.0 ) THEN
                    300:             IF( KASE.EQ.1 ) THEN
                    301: *
                    302: *              Multiply by diag(W)*inv(op(A)**T).
                    303: *
                    304:                CALL DGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK( N+1 ),
                    305:      $                      N, INFO )
                    306:                DO 110 I = 1, N
                    307:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    308:   110          CONTINUE
                    309:             ELSE
                    310: *
                    311: *              Multiply by inv(op(A))*diag(W).
                    312: *
                    313:                DO 120 I = 1, N
                    314:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    315:   120          CONTINUE
                    316:                CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
                    317:      $                      INFO )
                    318:             END IF
                    319:             GO TO 100
                    320:          END IF
                    321: *
                    322: *        Normalize error.
                    323: *
                    324:          LSTRES = ZERO
                    325:          DO 130 I = 1, N
                    326:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    327:   130    CONTINUE
                    328:          IF( LSTRES.NE.ZERO )
                    329:      $      FERR( J ) = FERR( J ) / LSTRES
                    330: *
                    331:   140 CONTINUE
                    332: *
                    333:       RETURN
                    334: *
                    335: *     End of DGERFS
                    336: *
                    337:       END

CVSweb interface <joel.bertrand@systella.fr>