Annotation of rpl/lapack/lapack/dgerfs.f, revision 1.15

1.8       bertrand    1: *> \brief \b DGERFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DGERFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgerfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgerfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgerfs.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                     22: *                          X, LDX, FERR, BERR, WORK, IWORK, INFO )
1.14      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          TRANS
                     26: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * ), IWORK( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     31: *      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                     32: *       ..
1.14      bertrand   33: *
1.8       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DGERFS improves the computed solution to a system of linear
                     41: *> equations and provides error bounds and backward error estimates for
                     42: *> the solution.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] TRANS
                     49: *> \verbatim
                     50: *>          TRANS is CHARACTER*1
                     51: *>          Specifies the form of the system of equations:
                     52: *>          = 'N':  A * X = B     (No transpose)
                     53: *>          = 'T':  A**T * X = B  (Transpose)
                     54: *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] N
                     58: *> \verbatim
                     59: *>          N is INTEGER
                     60: *>          The order of the matrix A.  N >= 0.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] NRHS
                     64: *> \verbatim
                     65: *>          NRHS is INTEGER
                     66: *>          The number of right hand sides, i.e., the number of columns
                     67: *>          of the matrices B and X.  NRHS >= 0.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] A
                     71: *> \verbatim
                     72: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     73: *>          The original N-by-N matrix A.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] LDA
                     77: *> \verbatim
                     78: *>          LDA is INTEGER
                     79: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] AF
                     83: *> \verbatim
                     84: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
                     85: *>          The factors L and U from the factorization A = P*L*U
                     86: *>          as computed by DGETRF.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] LDAF
                     90: *> \verbatim
                     91: *>          LDAF is INTEGER
                     92: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] IPIV
                     96: *> \verbatim
                     97: *>          IPIV is INTEGER array, dimension (N)
                     98: *>          The pivot indices from DGETRF; for 1<=i<=N, row i of the
                     99: *>          matrix was interchanged with row IPIV(i).
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] B
                    103: *> \verbatim
                    104: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    105: *>          The right hand side matrix B.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] LDB
                    109: *> \verbatim
                    110: *>          LDB is INTEGER
                    111: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in,out] X
                    115: *> \verbatim
                    116: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    117: *>          On entry, the solution matrix X, as computed by DGETRS.
                    118: *>          On exit, the improved solution matrix X.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] LDX
                    122: *> \verbatim
                    123: *>          LDX is INTEGER
                    124: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[out] FERR
                    128: *> \verbatim
                    129: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    130: *>          The estimated forward error bound for each solution vector
                    131: *>          X(j) (the j-th column of the solution matrix X).
                    132: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    133: *>          is an estimated upper bound for the magnitude of the largest
                    134: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    135: *>          largest element in X(j).  The estimate is as reliable as
                    136: *>          the estimate for RCOND, and is almost always a slight
                    137: *>          overestimate of the true error.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[out] BERR
                    141: *> \verbatim
                    142: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    143: *>          The componentwise relative backward error of each solution
                    144: *>          vector X(j) (i.e., the smallest relative change in
                    145: *>          any element of A or B that makes X(j) an exact solution).
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] WORK
                    149: *> \verbatim
                    150: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] IWORK
                    154: *> \verbatim
                    155: *>          IWORK is INTEGER array, dimension (N)
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[out] INFO
                    159: *> \verbatim
                    160: *>          INFO is INTEGER
                    161: *>          = 0:  successful exit
                    162: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    163: *> \endverbatim
                    164: *
                    165: *> \par Internal Parameters:
                    166: *  =========================
                    167: *>
                    168: *> \verbatim
                    169: *>  ITMAX is the maximum number of steps of iterative refinement.
                    170: *> \endverbatim
                    171: *
                    172: *  Authors:
                    173: *  ========
                    174: *
1.14      bertrand  175: *> \author Univ. of Tennessee
                    176: *> \author Univ. of California Berkeley
                    177: *> \author Univ. of Colorado Denver
                    178: *> \author NAG Ltd.
1.8       bertrand  179: *
1.14      bertrand  180: *> \date December 2016
1.8       bertrand  181: *
                    182: *> \ingroup doubleGEcomputational
                    183: *
                    184: *  =====================================================================
1.1       bertrand  185:       SUBROUTINE DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                    186:      $                   X, LDX, FERR, BERR, WORK, IWORK, INFO )
                    187: *
1.14      bertrand  188: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  189: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    190: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.14      bertrand  191: *     December 2016
1.1       bertrand  192: *
                    193: *     .. Scalar Arguments ..
                    194:       CHARACTER          TRANS
                    195:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                    196: *     ..
                    197: *     .. Array Arguments ..
                    198:       INTEGER            IPIV( * ), IWORK( * )
                    199:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    200:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                    201: *     ..
                    202: *
                    203: *  =====================================================================
                    204: *
                    205: *     .. Parameters ..
                    206:       INTEGER            ITMAX
                    207:       PARAMETER          ( ITMAX = 5 )
                    208:       DOUBLE PRECISION   ZERO
                    209:       PARAMETER          ( ZERO = 0.0D+0 )
                    210:       DOUBLE PRECISION   ONE
                    211:       PARAMETER          ( ONE = 1.0D+0 )
                    212:       DOUBLE PRECISION   TWO
                    213:       PARAMETER          ( TWO = 2.0D+0 )
                    214:       DOUBLE PRECISION   THREE
                    215:       PARAMETER          ( THREE = 3.0D+0 )
                    216: *     ..
                    217: *     .. Local Scalars ..
                    218:       LOGICAL            NOTRAN
                    219:       CHARACTER          TRANST
                    220:       INTEGER            COUNT, I, J, K, KASE, NZ
                    221:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    222: *     ..
                    223: *     .. Local Arrays ..
                    224:       INTEGER            ISAVE( 3 )
                    225: *     ..
                    226: *     .. External Subroutines ..
                    227:       EXTERNAL           DAXPY, DCOPY, DGEMV, DGETRS, DLACN2, XERBLA
                    228: *     ..
                    229: *     .. Intrinsic Functions ..
                    230:       INTRINSIC          ABS, MAX
                    231: *     ..
                    232: *     .. External Functions ..
                    233:       LOGICAL            LSAME
                    234:       DOUBLE PRECISION   DLAMCH
                    235:       EXTERNAL           LSAME, DLAMCH
                    236: *     ..
                    237: *     .. Executable Statements ..
                    238: *
                    239: *     Test the input parameters.
                    240: *
                    241:       INFO = 0
                    242:       NOTRAN = LSAME( TRANS, 'N' )
                    243:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    244:      $    LSAME( TRANS, 'C' ) ) THEN
                    245:          INFO = -1
                    246:       ELSE IF( N.LT.0 ) THEN
                    247:          INFO = -2
                    248:       ELSE IF( NRHS.LT.0 ) THEN
                    249:          INFO = -3
                    250:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    251:          INFO = -5
                    252:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    253:          INFO = -7
                    254:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    255:          INFO = -10
                    256:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    257:          INFO = -12
                    258:       END IF
                    259:       IF( INFO.NE.0 ) THEN
                    260:          CALL XERBLA( 'DGERFS', -INFO )
                    261:          RETURN
                    262:       END IF
                    263: *
                    264: *     Quick return if possible
                    265: *
                    266:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    267:          DO 10 J = 1, NRHS
                    268:             FERR( J ) = ZERO
                    269:             BERR( J ) = ZERO
                    270:    10    CONTINUE
                    271:          RETURN
                    272:       END IF
                    273: *
                    274:       IF( NOTRAN ) THEN
                    275:          TRANST = 'T'
                    276:       ELSE
                    277:          TRANST = 'N'
                    278:       END IF
                    279: *
                    280: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    281: *
                    282:       NZ = N + 1
                    283:       EPS = DLAMCH( 'Epsilon' )
                    284:       SAFMIN = DLAMCH( 'Safe minimum' )
                    285:       SAFE1 = NZ*SAFMIN
                    286:       SAFE2 = SAFE1 / EPS
                    287: *
                    288: *     Do for each right hand side
                    289: *
                    290:       DO 140 J = 1, NRHS
                    291: *
                    292:          COUNT = 1
                    293:          LSTRES = THREE
                    294:    20    CONTINUE
                    295: *
                    296: *        Loop until stopping criterion is satisfied.
                    297: *
                    298: *        Compute residual R = B - op(A) * X,
                    299: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    300: *
                    301:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    302:          CALL DGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
                    303:      $               WORK( N+1 ), 1 )
                    304: *
                    305: *        Compute componentwise relative backward error from formula
                    306: *
                    307: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    308: *
                    309: *        where abs(Z) is the componentwise absolute value of the matrix
                    310: *        or vector Z.  If the i-th component of the denominator is less
                    311: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    312: *        numerator and denominator before dividing.
                    313: *
                    314:          DO 30 I = 1, N
                    315:             WORK( I ) = ABS( B( I, J ) )
                    316:    30    CONTINUE
                    317: *
                    318: *        Compute abs(op(A))*abs(X) + abs(B).
                    319: *
                    320:          IF( NOTRAN ) THEN
                    321:             DO 50 K = 1, N
                    322:                XK = ABS( X( K, J ) )
                    323:                DO 40 I = 1, N
                    324:                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
                    325:    40          CONTINUE
                    326:    50       CONTINUE
                    327:          ELSE
                    328:             DO 70 K = 1, N
                    329:                S = ZERO
                    330:                DO 60 I = 1, N
                    331:                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
                    332:    60          CONTINUE
                    333:                WORK( K ) = WORK( K ) + S
                    334:    70       CONTINUE
                    335:          END IF
                    336:          S = ZERO
                    337:          DO 80 I = 1, N
                    338:             IF( WORK( I ).GT.SAFE2 ) THEN
                    339:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    340:             ELSE
                    341:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    342:      $             ( WORK( I )+SAFE1 ) )
                    343:             END IF
                    344:    80    CONTINUE
                    345:          BERR( J ) = S
                    346: *
                    347: *        Test stopping criterion. Continue iterating if
                    348: *           1) The residual BERR(J) is larger than machine epsilon, and
                    349: *           2) BERR(J) decreased by at least a factor of 2 during the
                    350: *              last iteration, and
                    351: *           3) At most ITMAX iterations tried.
                    352: *
                    353:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    354:      $       COUNT.LE.ITMAX ) THEN
                    355: *
                    356: *           Update solution and try again.
                    357: *
                    358:             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
                    359:      $                   INFO )
                    360:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    361:             LSTRES = BERR( J )
                    362:             COUNT = COUNT + 1
                    363:             GO TO 20
                    364:          END IF
                    365: *
                    366: *        Bound error from formula
                    367: *
                    368: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    369: *        norm( abs(inv(op(A)))*
                    370: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    371: *
                    372: *        where
                    373: *          norm(Z) is the magnitude of the largest component of Z
                    374: *          inv(op(A)) is the inverse of op(A)
                    375: *          abs(Z) is the componentwise absolute value of the matrix or
                    376: *             vector Z
                    377: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    378: *          EPS is machine epsilon
                    379: *
                    380: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    381: *        is incremented by SAFE1 if the i-th component of
                    382: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    383: *
                    384: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    385: *           inv(op(A)) * diag(W),
                    386: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    387: *
                    388:          DO 90 I = 1, N
                    389:             IF( WORK( I ).GT.SAFE2 ) THEN
                    390:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    391:             ELSE
                    392:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    393:             END IF
                    394:    90    CONTINUE
                    395: *
                    396:          KASE = 0
                    397:   100    CONTINUE
                    398:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    399:      $                KASE, ISAVE )
                    400:          IF( KASE.NE.0 ) THEN
                    401:             IF( KASE.EQ.1 ) THEN
                    402: *
                    403: *              Multiply by diag(W)*inv(op(A)**T).
                    404: *
                    405:                CALL DGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK( N+1 ),
                    406:      $                      N, INFO )
                    407:                DO 110 I = 1, N
                    408:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    409:   110          CONTINUE
                    410:             ELSE
                    411: *
                    412: *              Multiply by inv(op(A))*diag(W).
                    413: *
                    414:                DO 120 I = 1, N
                    415:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    416:   120          CONTINUE
                    417:                CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
                    418:      $                      INFO )
                    419:             END IF
                    420:             GO TO 100
                    421:          END IF
                    422: *
                    423: *        Normalize error.
                    424: *
                    425:          LSTRES = ZERO
                    426:          DO 130 I = 1, N
                    427:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    428:   130    CONTINUE
                    429:          IF( LSTRES.NE.ZERO )
                    430:      $      FERR( J ) = FERR( J ) / LSTRES
                    431: *
                    432:   140 CONTINUE
                    433: *
                    434:       RETURN
                    435: *
                    436: *     End of DGERFS
                    437: *
                    438:       END

CVSweb interface <joel.bertrand@systella.fr>