Annotation of rpl/lapack/lapack/dgeqrt3.f, revision 1.11

1.3       bertrand    1: *> \brief \b DGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
1.1       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.8       bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
1.8       bertrand    9: *> Download DGEQRT3 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrt3.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrt3.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrt3.f">
1.1       bertrand   15: *> [TXT]</a>
1.8       bertrand   16: *> \endhtmlonly
1.1       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       RECURSIVE SUBROUTINE DGEQRT3( M, N, A, LDA, T, LDT, INFO )
1.8       bertrand   22: *
1.1       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER   INFO, LDA, M, N, LDT
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), T( LDT, * )
                     28: *       ..
1.8       bertrand   29: *
1.1       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
1.8       bertrand   36: *> DGEQRT3 recursively computes a QR factorization of a real M-by-N
                     37: *> matrix A, using the compact WY representation of Q.
1.1       bertrand   38: *>
1.8       bertrand   39: *> Based on the algorithm of Elmroth and Gustavson,
1.1       bertrand   40: *> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] M
                     47: *> \verbatim
                     48: *>          M is INTEGER
                     49: *>          The number of rows of the matrix A.  M >= N.
                     50: *> \endverbatim
                     51: *>
                     52: *> \param[in] N
                     53: *> \verbatim
                     54: *>          N is INTEGER
                     55: *>          The number of columns of the matrix A.  N >= 0.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in,out] A
                     59: *> \verbatim
                     60: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     61: *>          On entry, the real M-by-N matrix A.  On exit, the elements on and
                     62: *>          above the diagonal contain the N-by-N upper triangular matrix R; the
                     63: *>          elements below the diagonal are the columns of V.  See below for
                     64: *>          further details.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] LDA
                     68: *> \verbatim
                     69: *>          LDA is INTEGER
                     70: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[out] T
                     74: *> \verbatim
                     75: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
                     76: *>          The N-by-N upper triangular factor of the block reflector.
                     77: *>          The elements on and above the diagonal contain the block
                     78: *>          reflector T; the elements below the diagonal are not used.
                     79: *>          See below for further details.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDT
                     83: *> \verbatim
                     84: *>          LDT is INTEGER
                     85: *>          The leading dimension of the array T.  LDT >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[out] INFO
                     89: *> \verbatim
                     90: *>          INFO is INTEGER
                     91: *>          = 0: successful exit
                     92: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     93: *> \endverbatim
                     94: *
                     95: *  Authors:
                     96: *  ========
                     97: *
1.8       bertrand   98: *> \author Univ. of Tennessee
                     99: *> \author Univ. of California Berkeley
                    100: *> \author Univ. of Colorado Denver
                    101: *> \author NAG Ltd.
1.1       bertrand  102: *
                    103: *> \ingroup doubleGEcomputational
                    104: *
                    105: *> \par Further Details:
                    106: *  =====================
                    107: *>
                    108: *> \verbatim
                    109: *>
                    110: *>  The matrix V stores the elementary reflectors H(i) in the i-th column
                    111: *>  below the diagonal. For example, if M=5 and N=3, the matrix V is
                    112: *>
                    113: *>               V = (  1       )
                    114: *>                   ( v1  1    )
                    115: *>                   ( v1 v2  1 )
                    116: *>                   ( v1 v2 v3 )
                    117: *>                   ( v1 v2 v3 )
                    118: *>
                    119: *>  where the vi's represent the vectors which define H(i), which are returned
                    120: *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
                    121: *>  block reflector H is then given by
                    122: *>
                    123: *>               H = I - V * T * V**T
                    124: *>
                    125: *>  where V**T is the transpose of V.
                    126: *>
                    127: *>  For details of the algorithm, see Elmroth and Gustavson (cited above).
                    128: *> \endverbatim
                    129: *>
                    130: *  =====================================================================
                    131:       RECURSIVE SUBROUTINE DGEQRT3( M, N, A, LDA, T, LDT, INFO )
                    132: *
1.11    ! bertrand  133: *  -- LAPACK computational routine --
1.1       bertrand  134: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    135: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    136: *
                    137: *     .. Scalar Arguments ..
                    138:       INTEGER   INFO, LDA, M, N, LDT
                    139: *     ..
                    140: *     .. Array Arguments ..
                    141:       DOUBLE PRECISION   A( LDA, * ), T( LDT, * )
                    142: *     ..
                    143: *
                    144: *  =====================================================================
                    145: *
                    146: *     .. Parameters ..
                    147:       DOUBLE PRECISION   ONE
                    148:       PARAMETER ( ONE = 1.0D+00 )
                    149: *     ..
                    150: *     .. Local Scalars ..
                    151:       INTEGER   I, I1, J, J1, N1, N2, IINFO
                    152: *     ..
                    153: *     .. External Subroutines ..
                    154:       EXTERNAL  DLARFG, DTRMM, DGEMM, XERBLA
                    155: *     ..
                    156: *     .. Executable Statements ..
                    157: *
                    158:       INFO = 0
                    159:       IF( N .LT. 0 ) THEN
                    160:          INFO = -2
                    161:       ELSE IF( M .LT. N ) THEN
                    162:          INFO = -1
                    163:       ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
                    164:          INFO = -4
                    165:       ELSE IF( LDT .LT. MAX( 1, N ) ) THEN
                    166:          INFO = -6
                    167:       END IF
                    168:       IF( INFO.NE.0 ) THEN
                    169:          CALL XERBLA( 'DGEQRT3', -INFO )
                    170:          RETURN
                    171:       END IF
                    172: *
                    173:       IF( N.EQ.1 ) THEN
                    174: *
                    175: *        Compute Householder transform when N=1
                    176: *
1.6       bertrand  177:          CALL DLARFG( M, A(1,1), A( MIN( 2, M ), 1 ), 1, T(1,1) )
1.8       bertrand  178: *
1.1       bertrand  179:       ELSE
                    180: *
                    181: *        Otherwise, split A into blocks...
                    182: *
                    183:          N1 = N/2
                    184:          N2 = N-N1
                    185:          J1 = MIN( N1+1, N )
                    186:          I1 = MIN( N+1, M )
                    187: *
                    188: *        Compute A(1:M,1:N1) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
                    189: *
                    190:          CALL DGEQRT3( M, N1, A, LDA, T, LDT, IINFO )
                    191: *
                    192: *        Compute A(1:M,J1:N) = Q1^H A(1:M,J1:N) [workspace: T(1:N1,J1:N)]
                    193: *
                    194:          DO J=1,N2
                    195:             DO I=1,N1
                    196:                T( I, J+N1 ) = A( I, J+N1 )
                    197:             END DO
                    198:          END DO
1.8       bertrand  199:          CALL DTRMM( 'L', 'L', 'T', 'U', N1, N2, ONE,
1.1       bertrand  200:      &               A, LDA, T( 1, J1 ), LDT )
                    201: *
                    202:          CALL DGEMM( 'T', 'N', N1, N2, M-N1, ONE, A( J1, 1 ), LDA,
                    203:      &               A( J1, J1 ), LDA, ONE, T( 1, J1 ), LDT)
                    204: *
                    205:          CALL DTRMM( 'L', 'U', 'T', 'N', N1, N2, ONE,
                    206:      &               T, LDT, T( 1, J1 ), LDT )
                    207: *
1.8       bertrand  208:          CALL DGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( J1, 1 ), LDA,
1.1       bertrand  209:      &               T( 1, J1 ), LDT, ONE, A( J1, J1 ), LDA )
                    210: *
                    211:          CALL DTRMM( 'L', 'L', 'N', 'U', N1, N2, ONE,
                    212:      &               A, LDA, T( 1, J1 ), LDT )
                    213: *
                    214:          DO J=1,N2
                    215:             DO I=1,N1
                    216:                A( I, J+N1 ) = A( I, J+N1 ) - T( I, J+N1 )
                    217:             END DO
                    218:          END DO
                    219: *
                    220: *        Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
                    221: *
1.8       bertrand  222:          CALL DGEQRT3( M-N1, N2, A( J1, J1 ), LDA,
1.1       bertrand  223:      &                T( J1, J1 ), LDT, IINFO )
                    224: *
                    225: *        Compute T3 = T(1:N1,J1:N) = -T1 Y1^H Y2 T2
                    226: *
                    227:          DO I=1,N1
                    228:             DO J=1,N2
                    229:                T( I, J+N1 ) = (A( J+N1, I ))
                    230:             END DO
                    231:          END DO
                    232: *
                    233:          CALL DTRMM( 'R', 'L', 'N', 'U', N1, N2, ONE,
                    234:      &               A( J1, J1 ), LDA, T( 1, J1 ), LDT )
                    235: *
1.8       bertrand  236:          CALL DGEMM( 'T', 'N', N1, N2, M-N, ONE, A( I1, 1 ), LDA,
1.1       bertrand  237:      &               A( I1, J1 ), LDA, ONE, T( 1, J1 ), LDT )
                    238: *
1.8       bertrand  239:          CALL DTRMM( 'L', 'U', 'N', 'N', N1, N2, -ONE, T, LDT,
1.1       bertrand  240:      &               T( 1, J1 ), LDT )
                    241: *
1.8       bertrand  242:          CALL DTRMM( 'R', 'U', 'N', 'N', N1, N2, ONE,
1.1       bertrand  243:      &               T( J1, J1 ), LDT, T( 1, J1 ), LDT )
                    244: *
                    245: *        Y = (Y1,Y2); R = [ R1  A(1:N1,J1:N) ];  T = [T1 T3]
                    246: *                         [  0        R2     ]       [ 0 T2]
                    247: *
                    248:       END IF
                    249: *
                    250:       RETURN
                    251: *
                    252: *     End of DGEQRT3
                    253: *
                    254:       END

CVSweb interface <joel.bertrand@systella.fr>