Annotation of rpl/lapack/lapack/dgeqrt2.f, revision 1.2

1.1       bertrand    1: *> \brief \b DGEQRT2
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGEQRT2 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrt2.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrt2.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrt2.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEQRT2( M, N, A, LDA, T, LDT, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER   INFO, LDA, LDT, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), T( LDT, * )
                     28: *       ..
                     29: *  
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DGEQRT2 computes a QR factorization of a real M-by-N matrix A, 
                     37: *> using the compact WY representation of Q. 
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] M
                     44: *> \verbatim
                     45: *>          M is INTEGER
                     46: *>          The number of rows of the matrix A.  M >= N.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The number of columns of the matrix A.  N >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in,out] A
                     56: *> \verbatim
                     57: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     58: *>          On entry, the real M-by-N matrix A.  On exit, the elements on and
                     59: *>          above the diagonal contain the N-by-N upper triangular matrix R; the
                     60: *>          elements below the diagonal are the columns of V.  See below for
                     61: *>          further details.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] LDA
                     65: *> \verbatim
                     66: *>          LDA is INTEGER
                     67: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[out] T
                     71: *> \verbatim
                     72: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
                     73: *>          The N-by-N upper triangular factor of the block reflector.
                     74: *>          The elements on and above the diagonal contain the block
                     75: *>          reflector T; the elements below the diagonal are not used.
                     76: *>          See below for further details.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] LDT
                     80: *> \verbatim
                     81: *>          LDT is INTEGER
                     82: *>          The leading dimension of the array T.  LDT >= max(1,N).
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[out] INFO
                     86: *> \verbatim
                     87: *>          INFO is INTEGER
                     88: *>          = 0: successful exit
                     89: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     90: *> \endverbatim
                     91: *
                     92: *  Authors:
                     93: *  ========
                     94: *
                     95: *> \author Univ. of Tennessee 
                     96: *> \author Univ. of California Berkeley 
                     97: *> \author Univ. of Colorado Denver 
                     98: *> \author NAG Ltd. 
                     99: *
                    100: *> \date November 2011
                    101: *
                    102: *> \ingroup doubleGEcomputational
                    103: *
                    104: *> \par Further Details:
                    105: *  =====================
                    106: *>
                    107: *> \verbatim
                    108: *>
                    109: *>  The matrix V stores the elementary reflectors H(i) in the i-th column
                    110: *>  below the diagonal. For example, if M=5 and N=3, the matrix V is
                    111: *>
                    112: *>               V = (  1       )
                    113: *>                   ( v1  1    )
                    114: *>                   ( v1 v2  1 )
                    115: *>                   ( v1 v2 v3 )
                    116: *>                   ( v1 v2 v3 )
                    117: *>
                    118: *>  where the vi's represent the vectors which define H(i), which are returned
                    119: *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
                    120: *>  block reflector H is then given by
                    121: *>
                    122: *>               H = I - V * T * V**T
                    123: *>
                    124: *>  where V**T is the transpose of V.
                    125: *> \endverbatim
                    126: *>
                    127: *  =====================================================================
                    128:       SUBROUTINE DGEQRT2( M, N, A, LDA, T, LDT, INFO )
                    129: *
                    130: *  -- LAPACK computational routine (version 3.4.0) --
                    131: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    132: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    133: *     November 2011
                    134: *
                    135: *     .. Scalar Arguments ..
                    136:       INTEGER   INFO, LDA, LDT, M, N
                    137: *     ..
                    138: *     .. Array Arguments ..
                    139:       DOUBLE PRECISION   A( LDA, * ), T( LDT, * )
                    140: *     ..
                    141: *
                    142: *  =====================================================================
                    143: *
                    144: *     .. Parameters ..
                    145:       DOUBLE PRECISION  ONE, ZERO
                    146:       PARAMETER( ONE = 1.0D+00, ZERO = 0.0D+00 )
                    147: *     ..
                    148: *     .. Local Scalars ..
                    149:       INTEGER   I, K
                    150:       DOUBLE PRECISION   AII, ALPHA
                    151: *     ..
                    152: *     .. External Subroutines ..
                    153:       EXTERNAL  DLARFG, DGEMV, DGER, DTRMV, XERBLA
                    154: *     ..
                    155: *     .. Executable Statements ..
                    156: *
                    157: *     Test the input arguments
                    158: *
                    159:       INFO = 0
                    160:       IF( M.LT.0 ) THEN
                    161:          INFO = -1
                    162:       ELSE IF( N.LT.0 ) THEN
                    163:          INFO = -2
                    164:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    165:          INFO = -4
                    166:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    167:          INFO = -6
                    168:       END IF
                    169:       IF( INFO.NE.0 ) THEN
                    170:          CALL XERBLA( 'DGEQRT2', -INFO )
                    171:          RETURN
                    172:       END IF
                    173: *      
                    174:       K = MIN( M, N )
                    175: *
                    176:       DO I = 1, K
                    177: *
                    178: *        Generate elem. refl. H(i) to annihilate A(i+1:m,i), tau(I) -> T(I,1)
                    179: *
                    180:          CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
                    181:      $                T( I, 1 ) )
                    182:          IF( I.LT.N ) THEN
                    183: *
                    184: *           Apply H(i) to A(I:M,I+1:N) from the left
                    185: *
                    186:             AII = A( I, I )
                    187:             A( I, I ) = ONE
                    188: *
                    189: *           W(1:N-I) := A(I:M,I+1:N)^H * A(I:M,I) [W = T(:,N)]
                    190: *
                    191:             CALL DGEMV( 'T',M-I+1, N-I, ONE, A( I, I+1 ), LDA, 
                    192:      $                  A( I, I ), 1, ZERO, T( 1, N ), 1 )
                    193: *
                    194: *           A(I:M,I+1:N) = A(I:m,I+1:N) + alpha*A(I:M,I)*W(1:N-1)^H
                    195: *
                    196:             ALPHA = -(T( I, 1 ))
                    197:             CALL DGER( M-I+1, N-I, ALPHA, A( I, I ), 1, 
                    198:      $           T( 1, N ), 1, A( I, I+1 ), LDA )
                    199:             A( I, I ) = AII
                    200:          END IF
                    201:       END DO
                    202: *
                    203:       DO I = 2, N
                    204:          AII = A( I, I )
                    205:          A( I, I ) = ONE
                    206: *
                    207: *        T(1:I-1,I) := alpha * A(I:M,1:I-1)**T * A(I:M,I)
                    208: *
                    209:          ALPHA = -T( I, 1 )
                    210:          CALL DGEMV( 'T', M-I+1, I-1, ALPHA, A( I, 1 ), LDA, 
                    211:      $               A( I, I ), 1, ZERO, T( 1, I ), 1 )
                    212:          A( I, I ) = AII
                    213: *
                    214: *        T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
                    215: *
                    216:          CALL DTRMV( 'U', 'N', 'N', I-1, T, LDT, T( 1, I ), 1 )
                    217: *
                    218: *           T(I,I) = tau(I)
                    219: *
                    220:             T( I, I ) = T( I, 1 )
                    221:             T( I, 1) = ZERO
                    222:       END DO
                    223:    
                    224: *
                    225: *     End of DGEQRT2
                    226: *
                    227:       END

CVSweb interface <joel.bertrand@systella.fr>