Annotation of rpl/lapack/lapack/dgeqrt.f, revision 1.4

1.1       bertrand    1: *> \brief \b DGEQRT
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGEQRT + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrt.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrt.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrt.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER INFO, LDA, LDT, M, N, NB
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
                     28: *       ..
                     29: *  
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DGEQRT computes a blocked QR factorization of a real M-by-N matrix A
                     37: *> using the compact WY representation of Q.  
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] M
                     44: *> \verbatim
                     45: *>          M is INTEGER
                     46: *>          The number of rows of the matrix A.  M >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The number of columns of the matrix A.  N >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] NB
                     56: *> \verbatim
                     57: *>          NB is INTEGER
                     58: *>          The block size to be used in the blocked QR.  MIN(M,N) >= NB >= 1.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in,out] A
                     62: *> \verbatim
                     63: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     64: *>          On entry, the M-by-N matrix A.
                     65: *>          On exit, the elements on and above the diagonal of the array
                     66: *>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
                     67: *>          upper triangular if M >= N); the elements below the diagonal
                     68: *>          are the columns of V.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] LDA
                     72: *> \verbatim
                     73: *>          LDA is INTEGER
                     74: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[out] T
                     78: *> \verbatim
                     79: *>          T is DOUBLE PRECISION array, dimension (LDT,MIN(M,N))
                     80: *>          The upper triangular block reflectors stored in compact form
                     81: *>          as a sequence of upper triangular blocks.  See below
                     82: *>          for further details.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] LDT
                     86: *> \verbatim
                     87: *>          LDT is INTEGER
                     88: *>          The leading dimension of the array T.  LDT >= NB.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[out] WORK
                     92: *> \verbatim
                     93: *>          WORK is DOUBLE PRECISION array, dimension (NB*N)
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[out] INFO
                     97: *> \verbatim
                     98: *>          INFO is INTEGER
                     99: *>          = 0:  successful exit
                    100: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    101: *> \endverbatim
                    102: *
                    103: *  Authors:
                    104: *  ========
                    105: *
                    106: *> \author Univ. of Tennessee 
                    107: *> \author Univ. of California Berkeley 
                    108: *> \author Univ. of Colorado Denver 
                    109: *> \author NAG Ltd. 
                    110: *
1.4     ! bertrand  111: *> \date November 2013
1.1       bertrand  112: *
                    113: *> \ingroup doubleGEcomputational
                    114: *
                    115: *> \par Further Details:
                    116: *  =====================
                    117: *>
                    118: *> \verbatim
                    119: *>
                    120: *>  The matrix V stores the elementary reflectors H(i) in the i-th column
                    121: *>  below the diagonal. For example, if M=5 and N=3, the matrix V is
                    122: *>
                    123: *>               V = (  1       )
                    124: *>                   ( v1  1    )
                    125: *>                   ( v1 v2  1 )
                    126: *>                   ( v1 v2 v3 )
                    127: *>                   ( v1 v2 v3 )
                    128: *>
                    129: *>  where the vi's represent the vectors which define H(i), which are returned
                    130: *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.
                    131: *>
                    132: *>  Let K=MIN(M,N).  The number of blocks is B = ceiling(K/NB), where each
                    133: *>  block is of order NB except for the last block, which is of order 
                    134: *>  IB = K - (B-1)*NB.  For each of the B blocks, a upper triangular block
                    135: *>  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB 
                    136: *>  for the last block) T's are stored in the NB-by-N matrix T as
                    137: *>
                    138: *>               T = (T1 T2 ... TB).
                    139: *> \endverbatim
                    140: *>
                    141: *  =====================================================================
                    142:       SUBROUTINE DGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
                    143: *
1.4     ! bertrand  144: *  -- LAPACK computational routine (version 3.5.0) --
1.1       bertrand  145: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    146: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.4     ! bertrand  147: *     November 2013
1.1       bertrand  148: *
                    149: *     .. Scalar Arguments ..
                    150:       INTEGER INFO, LDA, LDT, M, N, NB
                    151: *     ..
                    152: *     .. Array Arguments ..
                    153:       DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
                    154: *     ..
                    155: *
                    156: * =====================================================================
                    157: *
                    158: *     ..
                    159: *     .. Local Scalars ..
                    160:       INTEGER    I, IB, IINFO, K
                    161:       LOGICAL    USE_RECURSIVE_QR
                    162:       PARAMETER( USE_RECURSIVE_QR=.TRUE. )
                    163: *     ..
                    164: *     .. External Subroutines ..
                    165:       EXTERNAL   DGEQRT2, DGEQRT3, DLARFB, XERBLA
                    166: *     ..
                    167: *     .. Executable Statements ..
                    168: *
                    169: *     Test the input arguments
                    170: *
                    171:       INFO = 0
                    172:       IF( M.LT.0 ) THEN
                    173:          INFO = -1
                    174:       ELSE IF( N.LT.0 ) THEN
                    175:          INFO = -2
1.4     ! bertrand  176:       ELSE IF( NB.LT.1 .OR. ( NB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ) )THEN
1.1       bertrand  177:          INFO = -3
                    178:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    179:          INFO = -5
                    180:       ELSE IF( LDT.LT.NB ) THEN
                    181:          INFO = -7
                    182:       END IF
                    183:       IF( INFO.NE.0 ) THEN
                    184:          CALL XERBLA( 'DGEQRT', -INFO )
                    185:          RETURN
                    186:       END IF
                    187: *
                    188: *     Quick return if possible
                    189: *
                    190:       K = MIN( M, N )
                    191:       IF( K.EQ.0 ) RETURN
                    192: *
                    193: *     Blocked loop of length K
                    194: *
                    195:       DO I = 1, K,  NB
                    196:          IB = MIN( K-I+1, NB )
                    197: *     
                    198: *     Compute the QR factorization of the current block A(I:M,I:I+IB-1)
                    199: *
                    200:          IF( USE_RECURSIVE_QR ) THEN
                    201:             CALL DGEQRT3( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
                    202:          ELSE
                    203:             CALL DGEQRT2( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
                    204:          END IF
                    205:          IF( I+IB.LE.N ) THEN
                    206: *
                    207: *     Update by applying H**T to A(I:M,I+IB:N) from the left
                    208: *
                    209:             CALL DLARFB( 'L', 'T', 'F', 'C', M-I+1, N-I-IB+1, IB,
                    210:      $                   A( I, I ), LDA, T( 1, I ), LDT, 
                    211:      $                   A( I, I+IB ), LDA, WORK , N-I-IB+1 )
                    212:          END IF
                    213:       END DO
                    214:       RETURN
                    215: *     
                    216: *     End of DGEQRT
                    217: *
                    218:       END

CVSweb interface <joel.bertrand@systella.fr>