File:  [local] / rpl / lapack / lapack / dgeqrfp.f
Revision 1.13: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:53:48 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b DGEQRFP
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGEQRFP + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrfp.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrfp.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrfp.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, LWORK, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DGEQRFP computes a QR factorization of a real M-by-N matrix A:
   37: *> A = Q * R. The diagonal entries of R are nonnegative.
   38: *> \endverbatim
   39: *
   40: *  Arguments:
   41: *  ==========
   42: *
   43: *> \param[in] M
   44: *> \verbatim
   45: *>          M is INTEGER
   46: *>          The number of rows of the matrix A.  M >= 0.
   47: *> \endverbatim
   48: *>
   49: *> \param[in] N
   50: *> \verbatim
   51: *>          N is INTEGER
   52: *>          The number of columns of the matrix A.  N >= 0.
   53: *> \endverbatim
   54: *>
   55: *> \param[in,out] A
   56: *> \verbatim
   57: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   58: *>          On entry, the M-by-N matrix A.
   59: *>          On exit, the elements on and above the diagonal of the array
   60: *>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
   61: *>          upper triangular if m >= n). The diagonal entries of R
   62: *>          are nonnegative; the elements below the diagonal,
   63: *>          with the array TAU, represent the orthogonal matrix Q as a
   64: *>          product of min(m,n) elementary reflectors (see Further
   65: *>          Details).
   66: *> \endverbatim
   67: *>
   68: *> \param[in] LDA
   69: *> \verbatim
   70: *>          LDA is INTEGER
   71: *>          The leading dimension of the array A.  LDA >= max(1,M).
   72: *> \endverbatim
   73: *>
   74: *> \param[out] TAU
   75: *> \verbatim
   76: *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
   77: *>          The scalar factors of the elementary reflectors (see Further
   78: *>          Details).
   79: *> \endverbatim
   80: *>
   81: *> \param[out] WORK
   82: *> \verbatim
   83: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   84: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] LWORK
   88: *> \verbatim
   89: *>          LWORK is INTEGER
   90: *>          The dimension of the array WORK.  LWORK >= max(1,N).
   91: *>          For optimum performance LWORK >= N*NB, where NB is
   92: *>          the optimal blocksize.
   93: *>
   94: *>          If LWORK = -1, then a workspace query is assumed; the routine
   95: *>          only calculates the optimal size of the WORK array, returns
   96: *>          this value as the first entry of the WORK array, and no error
   97: *>          message related to LWORK is issued by XERBLA.
   98: *> \endverbatim
   99: *>
  100: *> \param[out] INFO
  101: *> \verbatim
  102: *>          INFO is INTEGER
  103: *>          = 0:  successful exit
  104: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  105: *> \endverbatim
  106: *
  107: *  Authors:
  108: *  ========
  109: *
  110: *> \author Univ. of Tennessee
  111: *> \author Univ. of California Berkeley
  112: *> \author Univ. of Colorado Denver
  113: *> \author NAG Ltd.
  114: *
  115: *> \date December 2016
  116: *
  117: *> \ingroup doubleGEcomputational
  118: *
  119: *> \par Further Details:
  120: *  =====================
  121: *>
  122: *> \verbatim
  123: *>
  124: *>  The matrix Q is represented as a product of elementary reflectors
  125: *>
  126: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
  127: *>
  128: *>  Each H(i) has the form
  129: *>
  130: *>     H(i) = I - tau * v * v**T
  131: *>
  132: *>  where tau is a real scalar, and v is a real vector with
  133: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  134: *>  and tau in TAU(i).
  135: *>
  136: *> See Lapack Working Note 203 for details
  137: *> \endverbatim
  138: *>
  139: *  =====================================================================
  140:       SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  141: *
  142: *  -- LAPACK computational routine (version 3.7.0) --
  143: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  144: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  145: *     December 2016
  146: *
  147: *     .. Scalar Arguments ..
  148:       INTEGER            INFO, LDA, LWORK, M, N
  149: *     ..
  150: *     .. Array Arguments ..
  151:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
  152: *     ..
  153: *
  154: *  =====================================================================
  155: *
  156: *     .. Local Scalars ..
  157:       LOGICAL            LQUERY
  158:       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
  159:      $                   NBMIN, NX
  160: *     ..
  161: *     .. External Subroutines ..
  162:       EXTERNAL           DGEQR2P, DLARFB, DLARFT, XERBLA
  163: *     ..
  164: *     .. Intrinsic Functions ..
  165:       INTRINSIC          MAX, MIN
  166: *     ..
  167: *     .. External Functions ..
  168:       INTEGER            ILAENV
  169:       EXTERNAL           ILAENV
  170: *     ..
  171: *     .. Executable Statements ..
  172: *
  173: *     Test the input arguments
  174: *
  175:       INFO = 0
  176:       NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
  177:       LWKOPT = N*NB
  178:       WORK( 1 ) = LWKOPT
  179:       LQUERY = ( LWORK.EQ.-1 )
  180:       IF( M.LT.0 ) THEN
  181:          INFO = -1
  182:       ELSE IF( N.LT.0 ) THEN
  183:          INFO = -2
  184:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  185:          INFO = -4
  186:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
  187:          INFO = -7
  188:       END IF
  189:       IF( INFO.NE.0 ) THEN
  190:          CALL XERBLA( 'DGEQRFP', -INFO )
  191:          RETURN
  192:       ELSE IF( LQUERY ) THEN
  193:          RETURN
  194:       END IF
  195: *
  196: *     Quick return if possible
  197: *
  198:       K = MIN( M, N )
  199:       IF( K.EQ.0 ) THEN
  200:          WORK( 1 ) = 1
  201:          RETURN
  202:       END IF
  203: *
  204:       NBMIN = 2
  205:       NX = 0
  206:       IWS = N
  207:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
  208: *
  209: *        Determine when to cross over from blocked to unblocked code.
  210: *
  211:          NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) )
  212:          IF( NX.LT.K ) THEN
  213: *
  214: *           Determine if workspace is large enough for blocked code.
  215: *
  216:             LDWORK = N
  217:             IWS = LDWORK*NB
  218:             IF( LWORK.LT.IWS ) THEN
  219: *
  220: *              Not enough workspace to use optimal NB:  reduce NB and
  221: *              determine the minimum value of NB.
  222: *
  223:                NB = LWORK / LDWORK
  224:                NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', M, N, -1,
  225:      $                 -1 ) )
  226:             END IF
  227:          END IF
  228:       END IF
  229: *
  230:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
  231: *
  232: *        Use blocked code initially
  233: *
  234:          DO 10 I = 1, K - NX, NB
  235:             IB = MIN( K-I+1, NB )
  236: *
  237: *           Compute the QR factorization of the current block
  238: *           A(i:m,i:i+ib-1)
  239: *
  240:             CALL DGEQR2P( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
  241:      $                   IINFO )
  242:             IF( I+IB.LE.N ) THEN
  243: *
  244: *              Form the triangular factor of the block reflector
  245: *              H = H(i) H(i+1) . . . H(i+ib-1)
  246: *
  247:                CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB,
  248:      $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
  249: *
  250: *              Apply H**T to A(i:m,i+ib:n) from the left
  251: *
  252:                CALL DLARFB( 'Left', 'Transpose', 'Forward',
  253:      $                      'Columnwise', M-I+1, N-I-IB+1, IB,
  254:      $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
  255:      $                      LDA, WORK( IB+1 ), LDWORK )
  256:             END IF
  257:    10    CONTINUE
  258:       ELSE
  259:          I = 1
  260:       END IF
  261: *
  262: *     Use unblocked code to factor the last or only block.
  263: *
  264:       IF( I.LE.K )
  265:      $   CALL DGEQR2P( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
  266:      $                IINFO )
  267: *
  268:       WORK( 1 ) = IWS
  269:       RETURN
  270: *
  271: *     End of DGEQRFP
  272: *
  273:       END

CVSweb interface <joel.bertrand@systella.fr>