Annotation of rpl/lapack/lapack/dgeqrfp.f, revision 1.6

1.6     ! bertrand    1: *> \brief \b DGEQRFP
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGEQRFP + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrfp.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrfp.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrfp.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER            INFO, LDA, LWORK, M, N
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
        !            28: *       ..
        !            29: *  
        !            30: *
        !            31: *> \par Purpose:
        !            32: *  =============
        !            33: *>
        !            34: *> \verbatim
        !            35: *>
        !            36: *> DGEQRFP computes a QR factorization of a real M-by-N matrix A:
        !            37: *> A = Q * R.
        !            38: *> \endverbatim
        !            39: *
        !            40: *  Arguments:
        !            41: *  ==========
        !            42: *
        !            43: *> \param[in] M
        !            44: *> \verbatim
        !            45: *>          M is INTEGER
        !            46: *>          The number of rows of the matrix A.  M >= 0.
        !            47: *> \endverbatim
        !            48: *>
        !            49: *> \param[in] N
        !            50: *> \verbatim
        !            51: *>          N is INTEGER
        !            52: *>          The number of columns of the matrix A.  N >= 0.
        !            53: *> \endverbatim
        !            54: *>
        !            55: *> \param[in,out] A
        !            56: *> \verbatim
        !            57: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            58: *>          On entry, the M-by-N matrix A.
        !            59: *>          On exit, the elements on and above the diagonal of the array
        !            60: *>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
        !            61: *>          upper triangular if m >= n); the elements below the diagonal,
        !            62: *>          with the array TAU, represent the orthogonal matrix Q as a
        !            63: *>          product of min(m,n) elementary reflectors (see Further
        !            64: *>          Details).
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in] LDA
        !            68: *> \verbatim
        !            69: *>          LDA is INTEGER
        !            70: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !            71: *> \endverbatim
        !            72: *>
        !            73: *> \param[out] TAU
        !            74: *> \verbatim
        !            75: *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
        !            76: *>          The scalar factors of the elementary reflectors (see Further
        !            77: *>          Details).
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[out] WORK
        !            81: *> \verbatim
        !            82: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            83: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[in] LWORK
        !            87: *> \verbatim
        !            88: *>          LWORK is INTEGER
        !            89: *>          The dimension of the array WORK.  LWORK >= max(1,N).
        !            90: *>          For optimum performance LWORK >= N*NB, where NB is
        !            91: *>          the optimal blocksize.
        !            92: *>
        !            93: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !            94: *>          only calculates the optimal size of the WORK array, returns
        !            95: *>          this value as the first entry of the WORK array, and no error
        !            96: *>          message related to LWORK is issued by XERBLA.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[out] INFO
        !           100: *> \verbatim
        !           101: *>          INFO is INTEGER
        !           102: *>          = 0:  successful exit
        !           103: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           104: *> \endverbatim
        !           105: *
        !           106: *  Authors:
        !           107: *  ========
        !           108: *
        !           109: *> \author Univ. of Tennessee 
        !           110: *> \author Univ. of California Berkeley 
        !           111: *> \author Univ. of Colorado Denver 
        !           112: *> \author NAG Ltd. 
        !           113: *
        !           114: *> \date November 2011
        !           115: *
        !           116: *> \ingroup doubleGEcomputational
        !           117: *
        !           118: *> \par Further Details:
        !           119: *  =====================
        !           120: *>
        !           121: *> \verbatim
        !           122: *>
        !           123: *>  The matrix Q is represented as a product of elementary reflectors
        !           124: *>
        !           125: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
        !           126: *>
        !           127: *>  Each H(i) has the form
        !           128: *>
        !           129: *>     H(i) = I - tau * v * v**T
        !           130: *>
        !           131: *>  where tau is a real scalar, and v is a real vector with
        !           132: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
        !           133: *>  and tau in TAU(i).
        !           134: *> \endverbatim
        !           135: *>
        !           136: *  =====================================================================
1.1       bertrand  137:       SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
                    138: *
1.6     ! bertrand  139: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.6     ! bertrand  142: *     November 2011
1.1       bertrand  143: *
                    144: *     .. Scalar Arguments ..
                    145:       INTEGER            INFO, LDA, LWORK, M, N
                    146: *     ..
                    147: *     .. Array Arguments ..
                    148:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                    149: *     ..
                    150: *
                    151: *  =====================================================================
                    152: *
                    153: *     .. Local Scalars ..
                    154:       LOGICAL            LQUERY
                    155:       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
                    156:      $                   NBMIN, NX
                    157: *     ..
                    158: *     .. External Subroutines ..
                    159:       EXTERNAL           DGEQR2P, DLARFB, DLARFT, XERBLA
                    160: *     ..
                    161: *     .. Intrinsic Functions ..
                    162:       INTRINSIC          MAX, MIN
                    163: *     ..
                    164: *     .. External Functions ..
                    165:       INTEGER            ILAENV
                    166:       EXTERNAL           ILAENV
                    167: *     ..
                    168: *     .. Executable Statements ..
                    169: *
                    170: *     Test the input arguments
                    171: *
                    172:       INFO = 0
                    173:       NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
                    174:       LWKOPT = N*NB
                    175:       WORK( 1 ) = LWKOPT
                    176:       LQUERY = ( LWORK.EQ.-1 )
                    177:       IF( M.LT.0 ) THEN
                    178:          INFO = -1
                    179:       ELSE IF( N.LT.0 ) THEN
                    180:          INFO = -2
                    181:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    182:          INFO = -4
                    183:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
                    184:          INFO = -7
                    185:       END IF
                    186:       IF( INFO.NE.0 ) THEN
                    187:          CALL XERBLA( 'DGEQRFP', -INFO )
                    188:          RETURN
                    189:       ELSE IF( LQUERY ) THEN
                    190:          RETURN
                    191:       END IF
                    192: *
                    193: *     Quick return if possible
                    194: *
                    195:       K = MIN( M, N )
                    196:       IF( K.EQ.0 ) THEN
                    197:          WORK( 1 ) = 1
                    198:          RETURN
                    199:       END IF
                    200: *
                    201:       NBMIN = 2
                    202:       NX = 0
                    203:       IWS = N
                    204:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
                    205: *
                    206: *        Determine when to cross over from blocked to unblocked code.
                    207: *
                    208:          NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) )
                    209:          IF( NX.LT.K ) THEN
                    210: *
                    211: *           Determine if workspace is large enough for blocked code.
                    212: *
                    213:             LDWORK = N
                    214:             IWS = LDWORK*NB
                    215:             IF( LWORK.LT.IWS ) THEN
                    216: *
                    217: *              Not enough workspace to use optimal NB:  reduce NB and
                    218: *              determine the minimum value of NB.
                    219: *
                    220:                NB = LWORK / LDWORK
                    221:                NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', M, N, -1,
                    222:      $                 -1 ) )
                    223:             END IF
                    224:          END IF
                    225:       END IF
                    226: *
                    227:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
                    228: *
                    229: *        Use blocked code initially
                    230: *
                    231:          DO 10 I = 1, K - NX, NB
                    232:             IB = MIN( K-I+1, NB )
                    233: *
                    234: *           Compute the QR factorization of the current block
                    235: *           A(i:m,i:i+ib-1)
                    236: *
                    237:             CALL DGEQR2P( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
                    238:      $                   IINFO )
                    239:             IF( I+IB.LE.N ) THEN
                    240: *
                    241: *              Form the triangular factor of the block reflector
                    242: *              H = H(i) H(i+1) . . . H(i+ib-1)
                    243: *
                    244:                CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB,
                    245:      $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
                    246: *
1.5       bertrand  247: *              Apply H**T to A(i:m,i+ib:n) from the left
1.1       bertrand  248: *
                    249:                CALL DLARFB( 'Left', 'Transpose', 'Forward',
                    250:      $                      'Columnwise', M-I+1, N-I-IB+1, IB,
                    251:      $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
                    252:      $                      LDA, WORK( IB+1 ), LDWORK )
                    253:             END IF
                    254:    10    CONTINUE
                    255:       ELSE
                    256:          I = 1
                    257:       END IF
                    258: *
                    259: *     Use unblocked code to factor the last or only block.
                    260: *
                    261:       IF( I.LE.K )
                    262:      $   CALL DGEQR2P( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
                    263:      $                IINFO )
                    264: *
                    265:       WORK( 1 ) = IWS
                    266:       RETURN
                    267: *
                    268: *     End of DGEQRFP
                    269: *
                    270:       END

CVSweb interface <joel.bertrand@systella.fr>