Annotation of rpl/lapack/lapack/dgeqrfp.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     June 2010
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INFO, LDA, LWORK, M, N
                     10: *     ..
                     11: *     .. Array Arguments ..
                     12:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                     13: *     ..
                     14: *
                     15: *  Purpose
                     16: *  =======
                     17: *
                     18: *  DGEQRFP computes a QR factorization of a real M-by-N matrix A:
                     19: *  A = Q * R.
                     20: *
                     21: *  Arguments
                     22: *  =========
                     23: *
                     24: *  M       (input) INTEGER
                     25: *          The number of rows of the matrix A.  M >= 0.
                     26: *
                     27: *  N       (input) INTEGER
                     28: *          The number of columns of the matrix A.  N >= 0.
                     29: *
                     30: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     31: *          On entry, the M-by-N matrix A.
                     32: *          On exit, the elements on and above the diagonal of the array
                     33: *          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
                     34: *          upper triangular if m >= n); the elements below the diagonal,
                     35: *          with the array TAU, represent the orthogonal matrix Q as a
                     36: *          product of min(m,n) elementary reflectors (see Further
                     37: *          Details).
                     38: *
                     39: *  LDA     (input) INTEGER
                     40: *          The leading dimension of the array A.  LDA >= max(1,M).
                     41: *
                     42: *  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
                     43: *          The scalar factors of the elementary reflectors (see Further
                     44: *          Details).
                     45: *
                     46: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     47: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     48: *
                     49: *  LWORK   (input) INTEGER
                     50: *          The dimension of the array WORK.  LWORK >= max(1,N).
                     51: *          For optimum performance LWORK >= N*NB, where NB is
                     52: *          the optimal blocksize.
                     53: *
                     54: *          If LWORK = -1, then a workspace query is assumed; the routine
                     55: *          only calculates the optimal size of the WORK array, returns
                     56: *          this value as the first entry of the WORK array, and no error
                     57: *          message related to LWORK is issued by XERBLA.
                     58: *
                     59: *  INFO    (output) INTEGER
                     60: *          = 0:  successful exit
                     61: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     62: *
                     63: *  Further Details
                     64: *  ===============
                     65: *
                     66: *  The matrix Q is represented as a product of elementary reflectors
                     67: *
                     68: *     Q = H(1) H(2) . . . H(k), where k = min(m,n).
                     69: *
                     70: *  Each H(i) has the form
                     71: *
                     72: *     H(i) = I - tau * v * v'
                     73: *
                     74: *  where tau is a real scalar, and v is a real vector with
                     75: *  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
                     76: *  and tau in TAU(i).
                     77: *
                     78: *  =====================================================================
                     79: *
                     80: *     .. Local Scalars ..
                     81:       LOGICAL            LQUERY
                     82:       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
                     83:      $                   NBMIN, NX
                     84: *     ..
                     85: *     .. External Subroutines ..
                     86:       EXTERNAL           DGEQR2P, DLARFB, DLARFT, XERBLA
                     87: *     ..
                     88: *     .. Intrinsic Functions ..
                     89:       INTRINSIC          MAX, MIN
                     90: *     ..
                     91: *     .. External Functions ..
                     92:       INTEGER            ILAENV
                     93:       EXTERNAL           ILAENV
                     94: *     ..
                     95: *     .. Executable Statements ..
                     96: *
                     97: *     Test the input arguments
                     98: *
                     99:       INFO = 0
                    100:       NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
                    101:       LWKOPT = N*NB
                    102:       WORK( 1 ) = LWKOPT
                    103:       LQUERY = ( LWORK.EQ.-1 )
                    104:       IF( M.LT.0 ) THEN
                    105:          INFO = -1
                    106:       ELSE IF( N.LT.0 ) THEN
                    107:          INFO = -2
                    108:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    109:          INFO = -4
                    110:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
                    111:          INFO = -7
                    112:       END IF
                    113:       IF( INFO.NE.0 ) THEN
                    114:          CALL XERBLA( 'DGEQRFP', -INFO )
                    115:          RETURN
                    116:       ELSE IF( LQUERY ) THEN
                    117:          RETURN
                    118:       END IF
                    119: *
                    120: *     Quick return if possible
                    121: *
                    122:       K = MIN( M, N )
                    123:       IF( K.EQ.0 ) THEN
                    124:          WORK( 1 ) = 1
                    125:          RETURN
                    126:       END IF
                    127: *
                    128:       NBMIN = 2
                    129:       NX = 0
                    130:       IWS = N
                    131:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
                    132: *
                    133: *        Determine when to cross over from blocked to unblocked code.
                    134: *
                    135:          NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) )
                    136:          IF( NX.LT.K ) THEN
                    137: *
                    138: *           Determine if workspace is large enough for blocked code.
                    139: *
                    140:             LDWORK = N
                    141:             IWS = LDWORK*NB
                    142:             IF( LWORK.LT.IWS ) THEN
                    143: *
                    144: *              Not enough workspace to use optimal NB:  reduce NB and
                    145: *              determine the minimum value of NB.
                    146: *
                    147:                NB = LWORK / LDWORK
                    148:                NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', M, N, -1,
                    149:      $                 -1 ) )
                    150:             END IF
                    151:          END IF
                    152:       END IF
                    153: *
                    154:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
                    155: *
                    156: *        Use blocked code initially
                    157: *
                    158:          DO 10 I = 1, K - NX, NB
                    159:             IB = MIN( K-I+1, NB )
                    160: *
                    161: *           Compute the QR factorization of the current block
                    162: *           A(i:m,i:i+ib-1)
                    163: *
                    164:             CALL DGEQR2P( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
                    165:      $                   IINFO )
                    166:             IF( I+IB.LE.N ) THEN
                    167: *
                    168: *              Form the triangular factor of the block reflector
                    169: *              H = H(i) H(i+1) . . . H(i+ib-1)
                    170: *
                    171:                CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB,
                    172:      $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
                    173: *
                    174: *              Apply H' to A(i:m,i+ib:n) from the left
                    175: *
                    176:                CALL DLARFB( 'Left', 'Transpose', 'Forward',
                    177:      $                      'Columnwise', M-I+1, N-I-IB+1, IB,
                    178:      $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
                    179:      $                      LDA, WORK( IB+1 ), LDWORK )
                    180:             END IF
                    181:    10    CONTINUE
                    182:       ELSE
                    183:          I = 1
                    184:       END IF
                    185: *
                    186: *     Use unblocked code to factor the last or only block.
                    187: *
                    188:       IF( I.LE.K )
                    189:      $   CALL DGEQR2P( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
                    190:      $                IINFO )
                    191: *
                    192:       WORK( 1 ) = IWS
                    193:       RETURN
                    194: *
                    195: *     End of DGEQRFP
                    196: *
                    197:       END

CVSweb interface <joel.bertrand@systella.fr>