Annotation of rpl/lapack/lapack/dgeqrfp.f, revision 1.15

1.6       bertrand    1: *> \brief \b DGEQRFP
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.13      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.6       bertrand    7: *
                      8: *> \htmlonly
1.13      bertrand    9: *> Download DGEQRFP + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrfp.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrfp.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrfp.f">
1.6       bertrand   15: *> [TXT]</a>
1.13      bertrand   16: *> \endhtmlonly
1.6       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
1.13      bertrand   22: *
1.6       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, LWORK, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.13      bertrand   29: *
1.6       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DGEQRFP computes a QR factorization of a real M-by-N matrix A:
1.11      bertrand   37: *> A = Q * R. The diagonal entries of R are nonnegative.
1.6       bertrand   38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] M
                     44: *> \verbatim
                     45: *>          M is INTEGER
                     46: *>          The number of rows of the matrix A.  M >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The number of columns of the matrix A.  N >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in,out] A
                     56: *> \verbatim
                     57: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     58: *>          On entry, the M-by-N matrix A.
                     59: *>          On exit, the elements on and above the diagonal of the array
                     60: *>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
1.11      bertrand   61: *>          upper triangular if m >= n). The diagonal entries of R
                     62: *>          are nonnegative; the elements below the diagonal,
1.6       bertrand   63: *>          with the array TAU, represent the orthogonal matrix Q as a
                     64: *>          product of min(m,n) elementary reflectors (see Further
                     65: *>          Details).
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] LDA
                     69: *> \verbatim
                     70: *>          LDA is INTEGER
                     71: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[out] TAU
                     75: *> \verbatim
                     76: *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
                     77: *>          The scalar factors of the elementary reflectors (see Further
                     78: *>          Details).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[out] WORK
                     82: *> \verbatim
                     83: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     84: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] LWORK
                     88: *> \verbatim
                     89: *>          LWORK is INTEGER
                     90: *>          The dimension of the array WORK.  LWORK >= max(1,N).
                     91: *>          For optimum performance LWORK >= N*NB, where NB is
                     92: *>          the optimal blocksize.
                     93: *>
                     94: *>          If LWORK = -1, then a workspace query is assumed; the routine
                     95: *>          only calculates the optimal size of the WORK array, returns
                     96: *>          this value as the first entry of the WORK array, and no error
                     97: *>          message related to LWORK is issued by XERBLA.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[out] INFO
                    101: *> \verbatim
                    102: *>          INFO is INTEGER
                    103: *>          = 0:  successful exit
                    104: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    105: *> \endverbatim
                    106: *
                    107: *  Authors:
                    108: *  ========
                    109: *
1.13      bertrand  110: *> \author Univ. of Tennessee
                    111: *> \author Univ. of California Berkeley
                    112: *> \author Univ. of Colorado Denver
                    113: *> \author NAG Ltd.
1.6       bertrand  114: *
1.13      bertrand  115: *> \date December 2016
1.6       bertrand  116: *
                    117: *> \ingroup doubleGEcomputational
                    118: *
                    119: *> \par Further Details:
                    120: *  =====================
                    121: *>
                    122: *> \verbatim
                    123: *>
                    124: *>  The matrix Q is represented as a product of elementary reflectors
                    125: *>
                    126: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
                    127: *>
                    128: *>  Each H(i) has the form
                    129: *>
                    130: *>     H(i) = I - tau * v * v**T
                    131: *>
                    132: *>  where tau is a real scalar, and v is a real vector with
                    133: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
                    134: *>  and tau in TAU(i).
1.11      bertrand  135: *>
                    136: *> See Lapack Working Note 203 for details
1.6       bertrand  137: *> \endverbatim
                    138: *>
                    139: *  =====================================================================
1.1       bertrand  140:       SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
                    141: *
1.13      bertrand  142: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  143: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    144: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.13      bertrand  145: *     December 2016
1.1       bertrand  146: *
                    147: *     .. Scalar Arguments ..
                    148:       INTEGER            INFO, LDA, LWORK, M, N
                    149: *     ..
                    150: *     .. Array Arguments ..
                    151:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                    152: *     ..
                    153: *
                    154: *  =====================================================================
                    155: *
                    156: *     .. Local Scalars ..
                    157:       LOGICAL            LQUERY
                    158:       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
                    159:      $                   NBMIN, NX
                    160: *     ..
                    161: *     .. External Subroutines ..
                    162:       EXTERNAL           DGEQR2P, DLARFB, DLARFT, XERBLA
                    163: *     ..
                    164: *     .. Intrinsic Functions ..
                    165:       INTRINSIC          MAX, MIN
                    166: *     ..
                    167: *     .. External Functions ..
                    168:       INTEGER            ILAENV
                    169:       EXTERNAL           ILAENV
                    170: *     ..
                    171: *     .. Executable Statements ..
                    172: *
                    173: *     Test the input arguments
                    174: *
                    175:       INFO = 0
                    176:       NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
                    177:       LWKOPT = N*NB
                    178:       WORK( 1 ) = LWKOPT
                    179:       LQUERY = ( LWORK.EQ.-1 )
                    180:       IF( M.LT.0 ) THEN
                    181:          INFO = -1
                    182:       ELSE IF( N.LT.0 ) THEN
                    183:          INFO = -2
                    184:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    185:          INFO = -4
                    186:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
                    187:          INFO = -7
                    188:       END IF
                    189:       IF( INFO.NE.0 ) THEN
                    190:          CALL XERBLA( 'DGEQRFP', -INFO )
                    191:          RETURN
                    192:       ELSE IF( LQUERY ) THEN
                    193:          RETURN
                    194:       END IF
                    195: *
                    196: *     Quick return if possible
                    197: *
                    198:       K = MIN( M, N )
                    199:       IF( K.EQ.0 ) THEN
                    200:          WORK( 1 ) = 1
                    201:          RETURN
                    202:       END IF
                    203: *
                    204:       NBMIN = 2
                    205:       NX = 0
                    206:       IWS = N
                    207:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
                    208: *
                    209: *        Determine when to cross over from blocked to unblocked code.
                    210: *
                    211:          NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) )
                    212:          IF( NX.LT.K ) THEN
                    213: *
                    214: *           Determine if workspace is large enough for blocked code.
                    215: *
                    216:             LDWORK = N
                    217:             IWS = LDWORK*NB
                    218:             IF( LWORK.LT.IWS ) THEN
                    219: *
                    220: *              Not enough workspace to use optimal NB:  reduce NB and
                    221: *              determine the minimum value of NB.
                    222: *
                    223:                NB = LWORK / LDWORK
                    224:                NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', M, N, -1,
                    225:      $                 -1 ) )
                    226:             END IF
                    227:          END IF
                    228:       END IF
                    229: *
                    230:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
                    231: *
                    232: *        Use blocked code initially
                    233: *
                    234:          DO 10 I = 1, K - NX, NB
                    235:             IB = MIN( K-I+1, NB )
                    236: *
                    237: *           Compute the QR factorization of the current block
                    238: *           A(i:m,i:i+ib-1)
                    239: *
                    240:             CALL DGEQR2P( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
                    241:      $                   IINFO )
                    242:             IF( I+IB.LE.N ) THEN
                    243: *
                    244: *              Form the triangular factor of the block reflector
                    245: *              H = H(i) H(i+1) . . . H(i+ib-1)
                    246: *
                    247:                CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB,
                    248:      $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
                    249: *
1.5       bertrand  250: *              Apply H**T to A(i:m,i+ib:n) from the left
1.1       bertrand  251: *
                    252:                CALL DLARFB( 'Left', 'Transpose', 'Forward',
                    253:      $                      'Columnwise', M-I+1, N-I-IB+1, IB,
                    254:      $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
                    255:      $                      LDA, WORK( IB+1 ), LDWORK )
                    256:             END IF
                    257:    10    CONTINUE
                    258:       ELSE
                    259:          I = 1
                    260:       END IF
                    261: *
                    262: *     Use unblocked code to factor the last or only block.
                    263: *
                    264:       IF( I.LE.K )
                    265:      $   CALL DGEQR2P( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
                    266:      $                IINFO )
                    267: *
                    268:       WORK( 1 ) = IWS
                    269:       RETURN
                    270: *
                    271: *     End of DGEQRFP
                    272: *
                    273:       END

CVSweb interface <joel.bertrand@systella.fr>