Annotation of rpl/lapack/lapack/dgeqrfp.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     June 2010
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            INFO, LDA, LWORK, M, N
        !            10: *     ..
        !            11: *     .. Array Arguments ..
        !            12:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
        !            13: *     ..
        !            14: *
        !            15: *  Purpose
        !            16: *  =======
        !            17: *
        !            18: *  DGEQRFP computes a QR factorization of a real M-by-N matrix A:
        !            19: *  A = Q * R.
        !            20: *
        !            21: *  Arguments
        !            22: *  =========
        !            23: *
        !            24: *  M       (input) INTEGER
        !            25: *          The number of rows of the matrix A.  M >= 0.
        !            26: *
        !            27: *  N       (input) INTEGER
        !            28: *          The number of columns of the matrix A.  N >= 0.
        !            29: *
        !            30: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !            31: *          On entry, the M-by-N matrix A.
        !            32: *          On exit, the elements on and above the diagonal of the array
        !            33: *          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
        !            34: *          upper triangular if m >= n); the elements below the diagonal,
        !            35: *          with the array TAU, represent the orthogonal matrix Q as a
        !            36: *          product of min(m,n) elementary reflectors (see Further
        !            37: *          Details).
        !            38: *
        !            39: *  LDA     (input) INTEGER
        !            40: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            41: *
        !            42: *  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
        !            43: *          The scalar factors of the elementary reflectors (see Further
        !            44: *          Details).
        !            45: *
        !            46: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            47: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            48: *
        !            49: *  LWORK   (input) INTEGER
        !            50: *          The dimension of the array WORK.  LWORK >= max(1,N).
        !            51: *          For optimum performance LWORK >= N*NB, where NB is
        !            52: *          the optimal blocksize.
        !            53: *
        !            54: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            55: *          only calculates the optimal size of the WORK array, returns
        !            56: *          this value as the first entry of the WORK array, and no error
        !            57: *          message related to LWORK is issued by XERBLA.
        !            58: *
        !            59: *  INFO    (output) INTEGER
        !            60: *          = 0:  successful exit
        !            61: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            62: *
        !            63: *  Further Details
        !            64: *  ===============
        !            65: *
        !            66: *  The matrix Q is represented as a product of elementary reflectors
        !            67: *
        !            68: *     Q = H(1) H(2) . . . H(k), where k = min(m,n).
        !            69: *
        !            70: *  Each H(i) has the form
        !            71: *
        !            72: *     H(i) = I - tau * v * v'
        !            73: *
        !            74: *  where tau is a real scalar, and v is a real vector with
        !            75: *  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
        !            76: *  and tau in TAU(i).
        !            77: *
        !            78: *  =====================================================================
        !            79: *
        !            80: *     .. Local Scalars ..
        !            81:       LOGICAL            LQUERY
        !            82:       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
        !            83:      $                   NBMIN, NX
        !            84: *     ..
        !            85: *     .. External Subroutines ..
        !            86:       EXTERNAL           DGEQR2P, DLARFB, DLARFT, XERBLA
        !            87: *     ..
        !            88: *     .. Intrinsic Functions ..
        !            89:       INTRINSIC          MAX, MIN
        !            90: *     ..
        !            91: *     .. External Functions ..
        !            92:       INTEGER            ILAENV
        !            93:       EXTERNAL           ILAENV
        !            94: *     ..
        !            95: *     .. Executable Statements ..
        !            96: *
        !            97: *     Test the input arguments
        !            98: *
        !            99:       INFO = 0
        !           100:       NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
        !           101:       LWKOPT = N*NB
        !           102:       WORK( 1 ) = LWKOPT
        !           103:       LQUERY = ( LWORK.EQ.-1 )
        !           104:       IF( M.LT.0 ) THEN
        !           105:          INFO = -1
        !           106:       ELSE IF( N.LT.0 ) THEN
        !           107:          INFO = -2
        !           108:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           109:          INFO = -4
        !           110:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
        !           111:          INFO = -7
        !           112:       END IF
        !           113:       IF( INFO.NE.0 ) THEN
        !           114:          CALL XERBLA( 'DGEQRFP', -INFO )
        !           115:          RETURN
        !           116:       ELSE IF( LQUERY ) THEN
        !           117:          RETURN
        !           118:       END IF
        !           119: *
        !           120: *     Quick return if possible
        !           121: *
        !           122:       K = MIN( M, N )
        !           123:       IF( K.EQ.0 ) THEN
        !           124:          WORK( 1 ) = 1
        !           125:          RETURN
        !           126:       END IF
        !           127: *
        !           128:       NBMIN = 2
        !           129:       NX = 0
        !           130:       IWS = N
        !           131:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
        !           132: *
        !           133: *        Determine when to cross over from blocked to unblocked code.
        !           134: *
        !           135:          NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) )
        !           136:          IF( NX.LT.K ) THEN
        !           137: *
        !           138: *           Determine if workspace is large enough for blocked code.
        !           139: *
        !           140:             LDWORK = N
        !           141:             IWS = LDWORK*NB
        !           142:             IF( LWORK.LT.IWS ) THEN
        !           143: *
        !           144: *              Not enough workspace to use optimal NB:  reduce NB and
        !           145: *              determine the minimum value of NB.
        !           146: *
        !           147:                NB = LWORK / LDWORK
        !           148:                NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', M, N, -1,
        !           149:      $                 -1 ) )
        !           150:             END IF
        !           151:          END IF
        !           152:       END IF
        !           153: *
        !           154:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
        !           155: *
        !           156: *        Use blocked code initially
        !           157: *
        !           158:          DO 10 I = 1, K - NX, NB
        !           159:             IB = MIN( K-I+1, NB )
        !           160: *
        !           161: *           Compute the QR factorization of the current block
        !           162: *           A(i:m,i:i+ib-1)
        !           163: *
        !           164:             CALL DGEQR2P( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
        !           165:      $                   IINFO )
        !           166:             IF( I+IB.LE.N ) THEN
        !           167: *
        !           168: *              Form the triangular factor of the block reflector
        !           169: *              H = H(i) H(i+1) . . . H(i+ib-1)
        !           170: *
        !           171:                CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB,
        !           172:      $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
        !           173: *
        !           174: *              Apply H' to A(i:m,i+ib:n) from the left
        !           175: *
        !           176:                CALL DLARFB( 'Left', 'Transpose', 'Forward',
        !           177:      $                      'Columnwise', M-I+1, N-I-IB+1, IB,
        !           178:      $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
        !           179:      $                      LDA, WORK( IB+1 ), LDWORK )
        !           180:             END IF
        !           181:    10    CONTINUE
        !           182:       ELSE
        !           183:          I = 1
        !           184:       END IF
        !           185: *
        !           186: *     Use unblocked code to factor the last or only block.
        !           187: *
        !           188:       IF( I.LE.K )
        !           189:      $   CALL DGEQR2P( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
        !           190:      $                IINFO )
        !           191: *
        !           192:       WORK( 1 ) = IWS
        !           193:       RETURN
        !           194: *
        !           195: *     End of DGEQRFP
        !           196: *
        !           197:       END

CVSweb interface <joel.bertrand@systella.fr>