Annotation of rpl/lapack/lapack/dgeqr2p.f, revision 1.18

1.9       bertrand    1: *> \brief \b DGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.
1.6       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.6       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DGEQR2P + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqr2p.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqr2p.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqr2p.f">
1.6       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.6       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
1.14      bertrand   22: *
1.6       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.14      bertrand   29: *
1.6       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
1.17      bertrand   36: *> DGEQR2P computes a QR factorization of a real m-by-n matrix A:
                     37: *>
                     38: *>    A = Q * ( R ),
                     39: *>            ( 0 )
                     40: *>
                     41: *> where:
                     42: *>
                     43: *>    Q is a m-by-m orthogonal matrix;
                     44: *>    R is an upper-triangular n-by-n matrix with nonnegative diagonal
                     45: *>    entries;
                     46: *>    0 is a (m-n)-by-n zero matrix, if m > n.
                     47: *>
1.6       bertrand   48: *> \endverbatim
                     49: *
                     50: *  Arguments:
                     51: *  ==========
                     52: *
                     53: *> \param[in] M
                     54: *> \verbatim
                     55: *>          M is INTEGER
                     56: *>          The number of rows of the matrix A.  M >= 0.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] N
                     60: *> \verbatim
                     61: *>          N is INTEGER
                     62: *>          The number of columns of the matrix A.  N >= 0.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in,out] A
                     66: *> \verbatim
                     67: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     68: *>          On entry, the m by n matrix A.
                     69: *>          On exit, the elements on and above the diagonal of the array
                     70: *>          contain the min(m,n) by n upper trapezoidal matrix R (R is
1.12      bertrand   71: *>          upper triangular if m >= n). The diagonal entries of R are
                     72: *>          nonnegative; the elements below the diagonal,
1.6       bertrand   73: *>          with the array TAU, represent the orthogonal matrix Q as a
                     74: *>          product of elementary reflectors (see Further Details).
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] LDA
                     78: *> \verbatim
                     79: *>          LDA is INTEGER
                     80: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[out] TAU
                     84: *> \verbatim
                     85: *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
                     86: *>          The scalar factors of the elementary reflectors (see Further
                     87: *>          Details).
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[out] WORK
                     91: *> \verbatim
                     92: *>          WORK is DOUBLE PRECISION array, dimension (N)
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[out] INFO
                     96: *> \verbatim
                     97: *>          INFO is INTEGER
                     98: *>          = 0: successful exit
                     99: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    100: *> \endverbatim
                    101: *
                    102: *  Authors:
                    103: *  ========
                    104: *
1.14      bertrand  105: *> \author Univ. of Tennessee
                    106: *> \author Univ. of California Berkeley
                    107: *> \author Univ. of Colorado Denver
                    108: *> \author NAG Ltd.
1.6       bertrand  109: *
                    110: *> \ingroup doubleGEcomputational
                    111: *
                    112: *> \par Further Details:
                    113: *  =====================
                    114: *>
                    115: *> \verbatim
                    116: *>
                    117: *>  The matrix Q is represented as a product of elementary reflectors
                    118: *>
                    119: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
                    120: *>
                    121: *>  Each H(i) has the form
                    122: *>
                    123: *>     H(i) = I - tau * v * v**T
                    124: *>
                    125: *>  where tau is a real scalar, and v is a real vector with
                    126: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
                    127: *>  and tau in TAU(i).
1.12      bertrand  128: *>
                    129: *> See Lapack Working Note 203 for details
1.6       bertrand  130: *> \endverbatim
                    131: *>
                    132: *  =====================================================================
1.1       bertrand  133:       SUBROUTINE DGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
                    134: *
1.18    ! bertrand  135: *  -- LAPACK computational routine --
1.1       bertrand  136: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    137: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    138: *
                    139: *     .. Scalar Arguments ..
                    140:       INTEGER            INFO, LDA, M, N
                    141: *     ..
                    142: *     .. Array Arguments ..
                    143:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                    144: *     ..
                    145: *
                    146: *  =====================================================================
                    147: *
                    148: *     .. Parameters ..
                    149:       DOUBLE PRECISION   ONE
                    150:       PARAMETER          ( ONE = 1.0D+0 )
                    151: *     ..
                    152: *     .. Local Scalars ..
                    153:       INTEGER            I, K
                    154:       DOUBLE PRECISION   AII
                    155: *     ..
                    156: *     .. External Subroutines ..
                    157:       EXTERNAL           DLARF, DLARFGP, XERBLA
                    158: *     ..
                    159: *     .. Intrinsic Functions ..
                    160:       INTRINSIC          MAX, MIN
                    161: *     ..
                    162: *     .. Executable Statements ..
                    163: *
                    164: *     Test the input arguments
                    165: *
                    166:       INFO = 0
                    167:       IF( M.LT.0 ) THEN
                    168:          INFO = -1
                    169:       ELSE IF( N.LT.0 ) THEN
                    170:          INFO = -2
                    171:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    172:          INFO = -4
                    173:       END IF
                    174:       IF( INFO.NE.0 ) THEN
                    175:          CALL XERBLA( 'DGEQR2P', -INFO )
                    176:          RETURN
                    177:       END IF
                    178: *
                    179:       K = MIN( M, N )
                    180: *
                    181:       DO 10 I = 1, K
                    182: *
                    183: *        Generate elementary reflector H(i) to annihilate A(i+1:m,i)
                    184: *
                    185:          CALL DLARFGP( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
                    186:      $                TAU( I ) )
                    187:          IF( I.LT.N ) THEN
                    188: *
                    189: *           Apply H(i) to A(i:m,i+1:n) from the left
                    190: *
                    191:             AII = A( I, I )
                    192:             A( I, I ) = ONE
                    193:             CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ),
                    194:      $                  A( I, I+1 ), LDA, WORK )
                    195:             A( I, I ) = AII
                    196:          END IF
                    197:    10 CONTINUE
                    198:       RETURN
                    199: *
                    200: *     End of DGEQR2P
                    201: *
                    202:       END

CVSweb interface <joel.bertrand@systella.fr>