File:  [local] / rpl / lapack / lapack / dgeqr.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:49 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DGEQR
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *       SUBROUTINE DGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK,
    7: *                         INFO )
    8: *
    9: *       .. Scalar Arguments ..
   10: *       INTEGER           INFO, LDA, M, N, TSIZE, LWORK
   11: *       ..
   12: *       .. Array Arguments ..
   13: *       DOUBLE PRECISION  A( LDA, * ), T( * ), WORK( * )
   14: *       ..
   15: *
   16: *
   17: *> \par Purpose:
   18: *  =============
   19: *>
   20: *> \verbatim
   21: *>
   22: *> DGEQR computes a QR factorization of a real M-by-N matrix A:
   23: *>
   24: *>    A = Q * ( R ),
   25: *>            ( 0 )
   26: *>
   27: *> where:
   28: *>
   29: *>    Q is a M-by-M orthogonal matrix;
   30: *>    R is an upper-triangular N-by-N matrix;
   31: *>    0 is a (M-N)-by-N zero matrix, if M > N.
   32: *>
   33: *> \endverbatim
   34: *
   35: *  Arguments:
   36: *  ==========
   37: *
   38: *> \param[in] M
   39: *> \verbatim
   40: *>          M is INTEGER
   41: *>          The number of rows of the matrix A.  M >= 0.
   42: *> \endverbatim
   43: *>
   44: *> \param[in] N
   45: *> \verbatim
   46: *>          N is INTEGER
   47: *>          The number of columns of the matrix A.  N >= 0.
   48: *> \endverbatim
   49: *>
   50: *> \param[in,out] A
   51: *> \verbatim
   52: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   53: *>          On entry, the M-by-N matrix A.
   54: *>          On exit, the elements on and above the diagonal of the array
   55: *>          contain the min(M,N)-by-N upper trapezoidal matrix R
   56: *>          (R is upper triangular if M >= N);
   57: *>          the elements below the diagonal are used to store part of the 
   58: *>          data structure to represent Q.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] LDA
   62: *> \verbatim
   63: *>          LDA is INTEGER
   64: *>          The leading dimension of the array A.  LDA >= max(1,M).
   65: *> \endverbatim
   66: *>
   67: *> \param[out] T
   68: *> \verbatim
   69: *>          T is DOUBLE PRECISION array, dimension (MAX(5,TSIZE))
   70: *>          On exit, if INFO = 0, T(1) returns optimal (or either minimal 
   71: *>          or optimal, if query is assumed) TSIZE. See TSIZE for details.
   72: *>          Remaining T contains part of the data structure used to represent Q.
   73: *>          If one wants to apply or construct Q, then one needs to keep T 
   74: *>          (in addition to A) and pass it to further subroutines.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] TSIZE
   78: *> \verbatim
   79: *>          TSIZE is INTEGER
   80: *>          If TSIZE >= 5, the dimension of the array T.
   81: *>          If TSIZE = -1 or -2, then a workspace query is assumed. The routine
   82: *>          only calculates the sizes of the T and WORK arrays, returns these
   83: *>          values as the first entries of the T and WORK arrays, and no error
   84: *>          message related to T or WORK is issued by XERBLA.
   85: *>          If TSIZE = -1, the routine calculates optimal size of T for the 
   86: *>          optimum performance and returns this value in T(1).
   87: *>          If TSIZE = -2, the routine calculates minimal size of T and 
   88: *>          returns this value in T(1).
   89: *> \endverbatim
   90: *>
   91: *> \param[out] WORK
   92: *> \verbatim
   93: *>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   94: *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
   95: *>          or optimal, if query was assumed) LWORK.
   96: *>          See LWORK for details.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LWORK
  100: *> \verbatim
  101: *>          LWORK is INTEGER
  102: *>          The dimension of the array WORK.
  103: *>          If LWORK = -1 or -2, then a workspace query is assumed. The routine
  104: *>          only calculates the sizes of the T and WORK arrays, returns these
  105: *>          values as the first entries of the T and WORK arrays, and no error
  106: *>          message related to T or WORK is issued by XERBLA.
  107: *>          If LWORK = -1, the routine calculates optimal size of WORK for the
  108: *>          optimal performance and returns this value in WORK(1).
  109: *>          If LWORK = -2, the routine calculates minimal size of WORK and 
  110: *>          returns this value in WORK(1).
  111: *> \endverbatim
  112: *>
  113: *> \param[out] INFO
  114: *> \verbatim
  115: *>          INFO is INTEGER
  116: *>          = 0:  successful exit
  117: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  118: *> \endverbatim
  119: *
  120: *  Authors:
  121: *  ========
  122: *
  123: *> \author Univ. of Tennessee
  124: *> \author Univ. of California Berkeley
  125: *> \author Univ. of Colorado Denver
  126: *> \author NAG Ltd.
  127: *
  128: *> \par Further Details
  129: *  ====================
  130: *>
  131: *> \verbatim
  132: *>
  133: *> The goal of the interface is to give maximum freedom to the developers for
  134: *> creating any QR factorization algorithm they wish. The triangular 
  135: *> (trapezoidal) R has to be stored in the upper part of A. The lower part of A
  136: *> and the array T can be used to store any relevant information for applying or
  137: *> constructing the Q factor. The WORK array can safely be discarded after exit.
  138: *>
  139: *> Caution: One should not expect the sizes of T and WORK to be the same from one 
  140: *> LAPACK implementation to the other, or even from one execution to the other.
  141: *> A workspace query (for T and WORK) is needed at each execution. However, 
  142: *> for a given execution, the size of T and WORK are fixed and will not change 
  143: *> from one query to the next.
  144: *>
  145: *> \endverbatim
  146: *>
  147: *> \par Further Details particular to this LAPACK implementation:
  148: *  ==============================================================
  149: *>
  150: *> \verbatim
  151: *>
  152: *> These details are particular for this LAPACK implementation. Users should not 
  153: *> take them for granted. These details may change in the future, and are not likely
  154: *> true for another LAPACK implementation. These details are relevant if one wants
  155: *> to try to understand the code. They are not part of the interface.
  156: *>
  157: *> In this version,
  158: *>
  159: *>          T(2): row block size (MB)
  160: *>          T(3): column block size (NB)
  161: *>          T(6:TSIZE): data structure needed for Q, computed by
  162: *>                           DLATSQR or DGEQRT
  163: *>
  164: *>  Depending on the matrix dimensions M and N, and row and column
  165: *>  block sizes MB and NB returned by ILAENV, DGEQR will use either
  166: *>  DLATSQR (if the matrix is tall-and-skinny) or DGEQRT to compute
  167: *>  the QR factorization.
  168: *>
  169: *> \endverbatim
  170: *>
  171: *  =====================================================================
  172:       SUBROUTINE DGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK,
  173:      $                  INFO )
  174: *
  175: *  -- LAPACK computational routine --
  176: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  177: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
  178: *
  179: *     .. Scalar Arguments ..
  180:       INTEGER            INFO, LDA, M, N, TSIZE, LWORK
  181: *     ..
  182: *     .. Array Arguments ..
  183:       DOUBLE PRECISION   A( LDA, * ), T( * ), WORK( * )
  184: *     ..
  185: *
  186: *  =====================================================================
  187: *
  188: *     ..
  189: *     .. Local Scalars ..
  190:       LOGICAL            LQUERY, LMINWS, MINT, MINW
  191:       INTEGER            MB, NB, MINTSZ, NBLCKS
  192: *     ..
  193: *     .. External Functions ..
  194:       LOGICAL            LSAME
  195:       EXTERNAL           LSAME
  196: *     ..
  197: *     .. External Subroutines ..
  198:       EXTERNAL           DLATSQR, DGEQRT, XERBLA
  199: *     ..
  200: *     .. Intrinsic Functions ..
  201:       INTRINSIC          MAX, MIN, MOD
  202: *     ..
  203: *     .. External Functions ..
  204:       INTEGER            ILAENV
  205:       EXTERNAL           ILAENV
  206: *     ..
  207: *     .. Executable Statements ..
  208: *
  209: *     Test the input arguments
  210: *
  211:       INFO = 0
  212: *
  213:       LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR.
  214:      $           LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  215: *
  216:       MINT = .FALSE.
  217:       MINW = .FALSE.
  218:       IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN
  219:         IF( TSIZE.NE.-1 ) MINT = .TRUE.
  220:         IF( LWORK.NE.-1 ) MINW = .TRUE.
  221:       END IF
  222: *
  223: *     Determine the block size
  224: *
  225:       IF( MIN( M, N ).GT.0 ) THEN
  226:         MB = ILAENV( 1, 'DGEQR ', ' ', M, N, 1, -1 )
  227:         NB = ILAENV( 1, 'DGEQR ', ' ', M, N, 2, -1 )
  228:       ELSE
  229:         MB = M
  230:         NB = 1
  231:       END IF
  232:       IF( MB.GT.M .OR. MB.LE.N ) MB = M
  233:       IF( NB.GT.MIN( M, N ) .OR. NB.LT.1 ) NB = 1
  234:       MINTSZ = N + 5
  235:       IF( MB.GT.N .AND. M.GT.N ) THEN
  236:         IF( MOD( M - N, MB - N ).EQ.0 ) THEN
  237:           NBLCKS = ( M - N ) / ( MB - N )
  238:         ELSE
  239:           NBLCKS = ( M - N ) / ( MB - N ) + 1
  240:         END IF
  241:       ELSE
  242:         NBLCKS = 1
  243:       END IF
  244: *
  245: *     Determine if the workspace size satisfies minimal size
  246: *
  247:       LMINWS = .FALSE.
  248:       IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.NB*N )
  249:      $    .AND. ( LWORK.GE.N ) .AND. ( TSIZE.GE.MINTSZ )
  250:      $    .AND. ( .NOT.LQUERY ) ) THEN
  251:         IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) ) THEN
  252:           LMINWS = .TRUE.
  253:           NB = 1
  254:           MB = M
  255:         END IF
  256:         IF( LWORK.LT.NB*N ) THEN
  257:           LMINWS = .TRUE.
  258:           NB = 1
  259:         END IF
  260:       END IF
  261: *
  262:       IF( M.LT.0 ) THEN
  263:         INFO = -1
  264:       ELSE IF( N.LT.0 ) THEN
  265:         INFO = -2
  266:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  267:         INFO = -4
  268:       ELSE IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 )
  269:      $   .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN
  270:         INFO = -6
  271:       ELSE IF( ( LWORK.LT.MAX( 1, N*NB ) ) .AND. ( .NOT.LQUERY )
  272:      $   .AND. ( .NOT.LMINWS ) ) THEN
  273:         INFO = -8
  274:       END IF
  275: *
  276:       IF( INFO.EQ.0 ) THEN
  277:         IF( MINT ) THEN
  278:           T( 1 ) = MINTSZ
  279:         ELSE
  280:           T( 1 ) = NB*N*NBLCKS + 5
  281:         END IF
  282:         T( 2 ) = MB
  283:         T( 3 ) = NB
  284:         IF( MINW ) THEN
  285:           WORK( 1 ) = MAX( 1, N )
  286:         ELSE
  287:           WORK( 1 ) = MAX( 1, NB*N )
  288:         END IF
  289:       END IF
  290:       IF( INFO.NE.0 ) THEN
  291:         CALL XERBLA( 'DGEQR', -INFO )
  292:         RETURN
  293:       ELSE IF( LQUERY ) THEN
  294:         RETURN
  295:       END IF
  296: *
  297: *     Quick return if possible
  298: *
  299:       IF( MIN( M, N ).EQ.0 ) THEN
  300:         RETURN
  301:       END IF
  302: *
  303: *     The QR Decomposition
  304: *
  305:       IF( ( M.LE.N ) .OR. ( MB.LE.N ) .OR. ( MB.GE.M ) ) THEN
  306:         CALL DGEQRT( M, N, NB, A, LDA, T( 6 ), NB, WORK, INFO )
  307:       ELSE
  308:         CALL DLATSQR( M, N, MB, NB, A, LDA, T( 6 ), NB, WORK,
  309:      $                LWORK, INFO )
  310:       END IF
  311: *
  312:       WORK( 1 ) = MAX( 1, NB*N )
  313: *
  314:       RETURN
  315: *
  316: *     End of DGEQR
  317: *
  318:       END

CVSweb interface <joel.bertrand@systella.fr>