File:  [local] / rpl / lapack / lapack / dgeqp3.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:05 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.3.1) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *  -- April 2011                                                      --
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, LDA, LWORK, M, N
   10: *     ..
   11: *     .. Array Arguments ..
   12:       INTEGER            JPVT( * )
   13:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
   14: *     ..
   15: *
   16: *  Purpose
   17: *  =======
   18: *
   19: *  DGEQP3 computes a QR factorization with column pivoting of a
   20: *  matrix A:  A*P = Q*R  using Level 3 BLAS.
   21: *
   22: *  Arguments
   23: *  =========
   24: *
   25: *  M       (input) INTEGER
   26: *          The number of rows of the matrix A. M >= 0.
   27: *
   28: *  N       (input) INTEGER
   29: *          The number of columns of the matrix A.  N >= 0.
   30: *
   31: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   32: *          On entry, the M-by-N matrix A.
   33: *          On exit, the upper triangle of the array contains the
   34: *          min(M,N)-by-N upper trapezoidal matrix R; the elements below
   35: *          the diagonal, together with the array TAU, represent the
   36: *          orthogonal matrix Q as a product of min(M,N) elementary
   37: *          reflectors.
   38: *
   39: *  LDA     (input) INTEGER
   40: *          The leading dimension of the array A. LDA >= max(1,M).
   41: *
   42: *  JPVT    (input/output) INTEGER array, dimension (N)
   43: *          On entry, if JPVT(J).ne.0, the J-th column of A is permuted
   44: *          to the front of A*P (a leading column); if JPVT(J)=0,
   45: *          the J-th column of A is a free column.
   46: *          On exit, if JPVT(J)=K, then the J-th column of A*P was the
   47: *          the K-th column of A.
   48: *
   49: *  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
   50: *          The scalar factors of the elementary reflectors.
   51: *
   52: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   53: *          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
   54: *
   55: *  LWORK   (input) INTEGER
   56: *          The dimension of the array WORK. LWORK >= 3*N+1.
   57: *          For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
   58: *          is the optimal blocksize.
   59: *
   60: *          If LWORK = -1, then a workspace query is assumed; the routine
   61: *          only calculates the optimal size of the WORK array, returns
   62: *          this value as the first entry of the WORK array, and no error
   63: *          message related to LWORK is issued by XERBLA.
   64: *
   65: *  INFO    (output) INTEGER
   66: *          = 0: successful exit.
   67: *          < 0: if INFO = -i, the i-th argument had an illegal value.
   68: *
   69: *  Further Details
   70: *  ===============
   71: *
   72: *  The matrix Q is represented as a product of elementary reflectors
   73: *
   74: *     Q = H(1) H(2) . . . H(k), where k = min(m,n).
   75: *
   76: *  Each H(i) has the form
   77: *
   78: *     H(i) = I - tau * v * v**T
   79: *
   80: *  where tau is a real/complex scalar, and v is a real/complex vector
   81: *  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
   82: *  A(i+1:m,i), and tau in TAU(i).
   83: *
   84: *  Based on contributions by
   85: *    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
   86: *    X. Sun, Computer Science Dept., Duke University, USA
   87: *
   88: *  =====================================================================
   89: *
   90: *     .. Parameters ..
   91:       INTEGER            INB, INBMIN, IXOVER
   92:       PARAMETER          ( INB = 1, INBMIN = 2, IXOVER = 3 )
   93: *     ..
   94: *     .. Local Scalars ..
   95:       LOGICAL            LQUERY
   96:       INTEGER            FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
   97:      $                   NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
   98: *     ..
   99: *     .. External Subroutines ..
  100:       EXTERNAL           DGEQRF, DLAQP2, DLAQPS, DORMQR, DSWAP, XERBLA
  101: *     ..
  102: *     .. External Functions ..
  103:       INTEGER            ILAENV
  104:       DOUBLE PRECISION   DNRM2
  105:       EXTERNAL           ILAENV, DNRM2
  106: *     ..
  107: *     .. Intrinsic Functions ..
  108:       INTRINSIC          INT, MAX, MIN
  109: *     ..
  110: *     .. Executable Statements ..
  111: *
  112: *     Test input arguments
  113: *     ====================
  114: *
  115:       INFO = 0
  116:       LQUERY = ( LWORK.EQ.-1 )
  117:       IF( M.LT.0 ) THEN
  118:          INFO = -1
  119:       ELSE IF( N.LT.0 ) THEN
  120:          INFO = -2
  121:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  122:          INFO = -4
  123:       END IF
  124: *
  125:       IF( INFO.EQ.0 ) THEN
  126:          MINMN = MIN( M, N )
  127:          IF( MINMN.EQ.0 ) THEN
  128:             IWS = 1
  129:             LWKOPT = 1
  130:          ELSE
  131:             IWS = 3*N + 1
  132:             NB = ILAENV( INB, 'DGEQRF', ' ', M, N, -1, -1 )
  133:             LWKOPT = 2*N + ( N + 1 )*NB
  134:          END IF
  135:          WORK( 1 ) = LWKOPT
  136: *
  137:          IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
  138:             INFO = -8
  139:          END IF
  140:       END IF
  141: *
  142:       IF( INFO.NE.0 ) THEN
  143:          CALL XERBLA( 'DGEQP3', -INFO )
  144:          RETURN
  145:       ELSE IF( LQUERY ) THEN
  146:          RETURN
  147:       END IF
  148: *
  149: *     Quick return if possible.
  150: *
  151:       IF( MINMN.EQ.0 ) THEN
  152:          RETURN
  153:       END IF
  154: *
  155: *     Move initial columns up front.
  156: *
  157:       NFXD = 1
  158:       DO 10 J = 1, N
  159:          IF( JPVT( J ).NE.0 ) THEN
  160:             IF( J.NE.NFXD ) THEN
  161:                CALL DSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
  162:                JPVT( J ) = JPVT( NFXD )
  163:                JPVT( NFXD ) = J
  164:             ELSE
  165:                JPVT( J ) = J
  166:             END IF
  167:             NFXD = NFXD + 1
  168:          ELSE
  169:             JPVT( J ) = J
  170:          END IF
  171:    10 CONTINUE
  172:       NFXD = NFXD - 1
  173: *
  174: *     Factorize fixed columns
  175: *     =======================
  176: *
  177: *     Compute the QR factorization of fixed columns and update
  178: *     remaining columns.
  179: *
  180:       IF( NFXD.GT.0 ) THEN
  181:          NA = MIN( M, NFXD )
  182: *CC      CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
  183:          CALL DGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
  184:          IWS = MAX( IWS, INT( WORK( 1 ) ) )
  185:          IF( NA.LT.N ) THEN
  186: *CC         CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA,
  187: *CC  $                   TAU, A( 1, NA+1 ), LDA, WORK, INFO )
  188:             CALL DORMQR( 'Left', 'Transpose', M, N-NA, NA, A, LDA, TAU,
  189:      $                   A( 1, NA+1 ), LDA, WORK, LWORK, INFO )
  190:             IWS = MAX( IWS, INT( WORK( 1 ) ) )
  191:          END IF
  192:       END IF
  193: *
  194: *     Factorize free columns
  195: *     ======================
  196: *
  197:       IF( NFXD.LT.MINMN ) THEN
  198: *
  199:          SM = M - NFXD
  200:          SN = N - NFXD
  201:          SMINMN = MINMN - NFXD
  202: *
  203: *        Determine the block size.
  204: *
  205:          NB = ILAENV( INB, 'DGEQRF', ' ', SM, SN, -1, -1 )
  206:          NBMIN = 2
  207:          NX = 0
  208: *
  209:          IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
  210: *
  211: *           Determine when to cross over from blocked to unblocked code.
  212: *
  213:             NX = MAX( 0, ILAENV( IXOVER, 'DGEQRF', ' ', SM, SN, -1,
  214:      $           -1 ) )
  215: *
  216: *
  217:             IF( NX.LT.SMINMN ) THEN
  218: *
  219: *              Determine if workspace is large enough for blocked code.
  220: *
  221:                MINWS = 2*SN + ( SN+1 )*NB
  222:                IWS = MAX( IWS, MINWS )
  223:                IF( LWORK.LT.MINWS ) THEN
  224: *
  225: *                 Not enough workspace to use optimal NB: Reduce NB and
  226: *                 determine the minimum value of NB.
  227: *
  228:                   NB = ( LWORK-2*SN ) / ( SN+1 )
  229:                   NBMIN = MAX( 2, ILAENV( INBMIN, 'DGEQRF', ' ', SM, SN,
  230:      $                    -1, -1 ) )
  231: *
  232: *
  233:                END IF
  234:             END IF
  235:          END IF
  236: *
  237: *        Initialize partial column norms. The first N elements of work
  238: *        store the exact column norms.
  239: *
  240:          DO 20 J = NFXD + 1, N
  241:             WORK( J ) = DNRM2( SM, A( NFXD+1, J ), 1 )
  242:             WORK( N+J ) = WORK( J )
  243:    20    CONTINUE
  244: *
  245:          IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
  246:      $       ( NX.LT.SMINMN ) ) THEN
  247: *
  248: *           Use blocked code initially.
  249: *
  250:             J = NFXD + 1
  251: *
  252: *           Compute factorization: while loop.
  253: *
  254: *
  255:             TOPBMN = MINMN - NX
  256:    30       CONTINUE
  257:             IF( J.LE.TOPBMN ) THEN
  258:                JB = MIN( NB, TOPBMN-J+1 )
  259: *
  260: *              Factorize JB columns among columns J:N.
  261: *
  262:                CALL DLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
  263:      $                      JPVT( J ), TAU( J ), WORK( J ), WORK( N+J ),
  264:      $                      WORK( 2*N+1 ), WORK( 2*N+JB+1 ), N-J+1 )
  265: *
  266:                J = J + FJB
  267:                GO TO 30
  268:             END IF
  269:          ELSE
  270:             J = NFXD + 1
  271:          END IF
  272: *
  273: *        Use unblocked code to factor the last or only block.
  274: *
  275: *
  276:          IF( J.LE.MINMN )
  277:      $      CALL DLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
  278:      $                   TAU( J ), WORK( J ), WORK( N+J ),
  279:      $                   WORK( 2*N+1 ) )
  280: *
  281:       END IF
  282: *
  283:       WORK( 1 ) = IWS
  284:       RETURN
  285: *
  286: *     End of DGEQP3
  287: *
  288:       END

CVSweb interface <joel.bertrand@systella.fr>