File:  [local] / rpl / lapack / lapack / dgeqp3.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:49 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DGEQP3
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGEQP3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqp3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqp3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqp3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, LWORK, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       INTEGER            JPVT( * )
   28: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DGEQP3 computes a QR factorization with column pivoting of a
   38: *> matrix A:  A*P = Q*R  using Level 3 BLAS.
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] M
   45: *> \verbatim
   46: *>          M is INTEGER
   47: *>          The number of rows of the matrix A. M >= 0.
   48: *> \endverbatim
   49: *>
   50: *> \param[in] N
   51: *> \verbatim
   52: *>          N is INTEGER
   53: *>          The number of columns of the matrix A.  N >= 0.
   54: *> \endverbatim
   55: *>
   56: *> \param[in,out] A
   57: *> \verbatim
   58: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   59: *>          On entry, the M-by-N matrix A.
   60: *>          On exit, the upper triangle of the array contains the
   61: *>          min(M,N)-by-N upper trapezoidal matrix R; the elements below
   62: *>          the diagonal, together with the array TAU, represent the
   63: *>          orthogonal matrix Q as a product of min(M,N) elementary
   64: *>          reflectors.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] LDA
   68: *> \verbatim
   69: *>          LDA is INTEGER
   70: *>          The leading dimension of the array A. LDA >= max(1,M).
   71: *> \endverbatim
   72: *>
   73: *> \param[in,out] JPVT
   74: *> \verbatim
   75: *>          JPVT is INTEGER array, dimension (N)
   76: *>          On entry, if JPVT(J).ne.0, the J-th column of A is permuted
   77: *>          to the front of A*P (a leading column); if JPVT(J)=0,
   78: *>          the J-th column of A is a free column.
   79: *>          On exit, if JPVT(J)=K, then the J-th column of A*P was the
   80: *>          the K-th column of A.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] TAU
   84: *> \verbatim
   85: *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
   86: *>          The scalar factors of the elementary reflectors.
   87: *> \endverbatim
   88: *>
   89: *> \param[out] WORK
   90: *> \verbatim
   91: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   92: *>          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] LWORK
   96: *> \verbatim
   97: *>          LWORK is INTEGER
   98: *>          The dimension of the array WORK. LWORK >= 3*N+1.
   99: *>          For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
  100: *>          is the optimal blocksize.
  101: *>
  102: *>          If LWORK = -1, then a workspace query is assumed; the routine
  103: *>          only calculates the optimal size of the WORK array, returns
  104: *>          this value as the first entry of the WORK array, and no error
  105: *>          message related to LWORK is issued by XERBLA.
  106: *> \endverbatim
  107: *>
  108: *> \param[out] INFO
  109: *> \verbatim
  110: *>          INFO is INTEGER
  111: *>          = 0: successful exit.
  112: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  113: *> \endverbatim
  114: *
  115: *  Authors:
  116: *  ========
  117: *
  118: *> \author Univ. of Tennessee
  119: *> \author Univ. of California Berkeley
  120: *> \author Univ. of Colorado Denver
  121: *> \author NAG Ltd.
  122: *
  123: *> \ingroup doubleGEcomputational
  124: *
  125: *> \par Further Details:
  126: *  =====================
  127: *>
  128: *> \verbatim
  129: *>
  130: *>  The matrix Q is represented as a product of elementary reflectors
  131: *>
  132: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
  133: *>
  134: *>  Each H(i) has the form
  135: *>
  136: *>     H(i) = I - tau * v * v**T
  137: *>
  138: *>  where tau is a real scalar, and v is a real/complex vector
  139: *>  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
  140: *>  A(i+1:m,i), and tau in TAU(i).
  141: *> \endverbatim
  142: *
  143: *> \par Contributors:
  144: *  ==================
  145: *>
  146: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  147: *>    X. Sun, Computer Science Dept., Duke University, USA
  148: *>
  149: *  =====================================================================
  150:       SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
  151: *
  152: *  -- LAPACK computational routine --
  153: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  154: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  155: *
  156: *     .. Scalar Arguments ..
  157:       INTEGER            INFO, LDA, LWORK, M, N
  158: *     ..
  159: *     .. Array Arguments ..
  160:       INTEGER            JPVT( * )
  161:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
  162: *     ..
  163: *
  164: *  =====================================================================
  165: *
  166: *     .. Parameters ..
  167:       INTEGER            INB, INBMIN, IXOVER
  168:       PARAMETER          ( INB = 1, INBMIN = 2, IXOVER = 3 )
  169: *     ..
  170: *     .. Local Scalars ..
  171:       LOGICAL            LQUERY
  172:       INTEGER            FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
  173:      $                   NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
  174: *     ..
  175: *     .. External Subroutines ..
  176:       EXTERNAL           DGEQRF, DLAQP2, DLAQPS, DORMQR, DSWAP, XERBLA
  177: *     ..
  178: *     .. External Functions ..
  179:       INTEGER            ILAENV
  180:       DOUBLE PRECISION   DNRM2
  181:       EXTERNAL           ILAENV, DNRM2
  182: *     ..
  183: *     .. Intrinsic Functions ..
  184:       INTRINSIC          INT, MAX, MIN
  185: *     ..
  186: *     .. Executable Statements ..
  187: *
  188: *     Test input arguments
  189: *  ====================
  190: *
  191:       INFO = 0
  192:       LQUERY = ( LWORK.EQ.-1 )
  193:       IF( M.LT.0 ) THEN
  194:          INFO = -1
  195:       ELSE IF( N.LT.0 ) THEN
  196:          INFO = -2
  197:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  198:          INFO = -4
  199:       END IF
  200: *
  201:       IF( INFO.EQ.0 ) THEN
  202:          MINMN = MIN( M, N )
  203:          IF( MINMN.EQ.0 ) THEN
  204:             IWS = 1
  205:             LWKOPT = 1
  206:          ELSE
  207:             IWS = 3*N + 1
  208:             NB = ILAENV( INB, 'DGEQRF', ' ', M, N, -1, -1 )
  209:             LWKOPT = 2*N + ( N + 1 )*NB
  210:          END IF
  211:          WORK( 1 ) = LWKOPT
  212: *
  213:          IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
  214:             INFO = -8
  215:          END IF
  216:       END IF
  217: *
  218:       IF( INFO.NE.0 ) THEN
  219:          CALL XERBLA( 'DGEQP3', -INFO )
  220:          RETURN
  221:       ELSE IF( LQUERY ) THEN
  222:          RETURN
  223:       END IF
  224: *
  225: *     Move initial columns up front.
  226: *
  227:       NFXD = 1
  228:       DO 10 J = 1, N
  229:          IF( JPVT( J ).NE.0 ) THEN
  230:             IF( J.NE.NFXD ) THEN
  231:                CALL DSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
  232:                JPVT( J ) = JPVT( NFXD )
  233:                JPVT( NFXD ) = J
  234:             ELSE
  235:                JPVT( J ) = J
  236:             END IF
  237:             NFXD = NFXD + 1
  238:          ELSE
  239:             JPVT( J ) = J
  240:          END IF
  241:    10 CONTINUE
  242:       NFXD = NFXD - 1
  243: *
  244: *     Factorize fixed columns
  245: *  =======================
  246: *
  247: *     Compute the QR factorization of fixed columns and update
  248: *     remaining columns.
  249: *
  250:       IF( NFXD.GT.0 ) THEN
  251:          NA = MIN( M, NFXD )
  252: *CC      CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
  253:          CALL DGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
  254:          IWS = MAX( IWS, INT( WORK( 1 ) ) )
  255:          IF( NA.LT.N ) THEN
  256: *CC         CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA,
  257: *CC  $                   TAU, A( 1, NA+1 ), LDA, WORK, INFO )
  258:             CALL DORMQR( 'Left', 'Transpose', M, N-NA, NA, A, LDA, TAU,
  259:      $                   A( 1, NA+1 ), LDA, WORK, LWORK, INFO )
  260:             IWS = MAX( IWS, INT( WORK( 1 ) ) )
  261:          END IF
  262:       END IF
  263: *
  264: *     Factorize free columns
  265: *  ======================
  266: *
  267:       IF( NFXD.LT.MINMN ) THEN
  268: *
  269:          SM = M - NFXD
  270:          SN = N - NFXD
  271:          SMINMN = MINMN - NFXD
  272: *
  273: *        Determine the block size.
  274: *
  275:          NB = ILAENV( INB, 'DGEQRF', ' ', SM, SN, -1, -1 )
  276:          NBMIN = 2
  277:          NX = 0
  278: *
  279:          IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
  280: *
  281: *           Determine when to cross over from blocked to unblocked code.
  282: *
  283:             NX = MAX( 0, ILAENV( IXOVER, 'DGEQRF', ' ', SM, SN, -1,
  284:      $           -1 ) )
  285: *
  286: *
  287:             IF( NX.LT.SMINMN ) THEN
  288: *
  289: *              Determine if workspace is large enough for blocked code.
  290: *
  291:                MINWS = 2*SN + ( SN+1 )*NB
  292:                IWS = MAX( IWS, MINWS )
  293:                IF( LWORK.LT.MINWS ) THEN
  294: *
  295: *                 Not enough workspace to use optimal NB: Reduce NB and
  296: *                 determine the minimum value of NB.
  297: *
  298:                   NB = ( LWORK-2*SN ) / ( SN+1 )
  299:                   NBMIN = MAX( 2, ILAENV( INBMIN, 'DGEQRF', ' ', SM, SN,
  300:      $                    -1, -1 ) )
  301: *
  302: *
  303:                END IF
  304:             END IF
  305:          END IF
  306: *
  307: *        Initialize partial column norms. The first N elements of work
  308: *        store the exact column norms.
  309: *
  310:          DO 20 J = NFXD + 1, N
  311:             WORK( J ) = DNRM2( SM, A( NFXD+1, J ), 1 )
  312:             WORK( N+J ) = WORK( J )
  313:    20    CONTINUE
  314: *
  315:          IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
  316:      $       ( NX.LT.SMINMN ) ) THEN
  317: *
  318: *           Use blocked code initially.
  319: *
  320:             J = NFXD + 1
  321: *
  322: *           Compute factorization: while loop.
  323: *
  324: *
  325:             TOPBMN = MINMN - NX
  326:    30       CONTINUE
  327:             IF( J.LE.TOPBMN ) THEN
  328:                JB = MIN( NB, TOPBMN-J+1 )
  329: *
  330: *              Factorize JB columns among columns J:N.
  331: *
  332:                CALL DLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
  333:      $                      JPVT( J ), TAU( J ), WORK( J ), WORK( N+J ),
  334:      $                      WORK( 2*N+1 ), WORK( 2*N+JB+1 ), N-J+1 )
  335: *
  336:                J = J + FJB
  337:                GO TO 30
  338:             END IF
  339:          ELSE
  340:             J = NFXD + 1
  341:          END IF
  342: *
  343: *        Use unblocked code to factor the last or only block.
  344: *
  345: *
  346:          IF( J.LE.MINMN )
  347:      $      CALL DLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
  348:      $                   TAU( J ), WORK( J ), WORK( N+J ),
  349:      $                   WORK( 2*N+1 ) )
  350: *
  351:       END IF
  352: *
  353:       WORK( 1 ) = IWS
  354:       RETURN
  355: *
  356: *     End of DGEQP3
  357: *
  358:       END

CVSweb interface <joel.bertrand@systella.fr>