File:  [local] / rpl / lapack / lapack / dgeqp3.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:27 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b DGEQP3
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DGEQP3 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqp3.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqp3.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqp3.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, LWORK, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       INTEGER            JPVT( * )
   28: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DGEQP3 computes a QR factorization with column pivoting of a
   38: *> matrix A:  A*P = Q*R  using Level 3 BLAS.
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] M
   45: *> \verbatim
   46: *>          M is INTEGER
   47: *>          The number of rows of the matrix A. M >= 0.
   48: *> \endverbatim
   49: *>
   50: *> \param[in] N
   51: *> \verbatim
   52: *>          N is INTEGER
   53: *>          The number of columns of the matrix A.  N >= 0.
   54: *> \endverbatim
   55: *>
   56: *> \param[in,out] A
   57: *> \verbatim
   58: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   59: *>          On entry, the M-by-N matrix A.
   60: *>          On exit, the upper triangle of the array contains the
   61: *>          min(M,N)-by-N upper trapezoidal matrix R; the elements below
   62: *>          the diagonal, together with the array TAU, represent the
   63: *>          orthogonal matrix Q as a product of min(M,N) elementary
   64: *>          reflectors.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] LDA
   68: *> \verbatim
   69: *>          LDA is INTEGER
   70: *>          The leading dimension of the array A. LDA >= max(1,M).
   71: *> \endverbatim
   72: *>
   73: *> \param[in,out] JPVT
   74: *> \verbatim
   75: *>          JPVT is INTEGER array, dimension (N)
   76: *>          On entry, if JPVT(J).ne.0, the J-th column of A is permuted
   77: *>          to the front of A*P (a leading column); if JPVT(J)=0,
   78: *>          the J-th column of A is a free column.
   79: *>          On exit, if JPVT(J)=K, then the J-th column of A*P was the
   80: *>          the K-th column of A.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] TAU
   84: *> \verbatim
   85: *>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
   86: *>          The scalar factors of the elementary reflectors.
   87: *> \endverbatim
   88: *>
   89: *> \param[out] WORK
   90: *> \verbatim
   91: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   92: *>          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] LWORK
   96: *> \verbatim
   97: *>          LWORK is INTEGER
   98: *>          The dimension of the array WORK. LWORK >= 3*N+1.
   99: *>          For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
  100: *>          is the optimal blocksize.
  101: *>
  102: *>          If LWORK = -1, then a workspace query is assumed; the routine
  103: *>          only calculates the optimal size of the WORK array, returns
  104: *>          this value as the first entry of the WORK array, and no error
  105: *>          message related to LWORK is issued by XERBLA.
  106: *> \endverbatim
  107: *>
  108: *> \param[out] INFO
  109: *> \verbatim
  110: *>          INFO is INTEGER
  111: *>          = 0: successful exit.
  112: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  113: *> \endverbatim
  114: *
  115: *  Authors:
  116: *  ========
  117: *
  118: *> \author Univ. of Tennessee 
  119: *> \author Univ. of California Berkeley 
  120: *> \author Univ. of Colorado Denver 
  121: *> \author NAG Ltd. 
  122: *
  123: *> \date November 2011
  124: *
  125: *> \ingroup doubleGEcomputational
  126: *
  127: *> \par Further Details:
  128: *  =====================
  129: *>
  130: *> \verbatim
  131: *>
  132: *>  The matrix Q is represented as a product of elementary reflectors
  133: *>
  134: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
  135: *>
  136: *>  Each H(i) has the form
  137: *>
  138: *>     H(i) = I - tau * v * v**T
  139: *>
  140: *>  where tau is a real/complex scalar, and v is a real/complex vector
  141: *>  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
  142: *>  A(i+1:m,i), and tau in TAU(i).
  143: *> \endverbatim
  144: *
  145: *> \par Contributors:
  146: *  ==================
  147: *>
  148: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  149: *>    X. Sun, Computer Science Dept., Duke University, USA
  150: *>
  151: *  =====================================================================
  152:       SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
  153: *
  154: *  -- LAPACK computational routine (version 3.4.0) --
  155: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  156: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  157: *     November 2011
  158: *
  159: *     .. Scalar Arguments ..
  160:       INTEGER            INFO, LDA, LWORK, M, N
  161: *     ..
  162: *     .. Array Arguments ..
  163:       INTEGER            JPVT( * )
  164:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
  165: *     ..
  166: *
  167: *  =====================================================================
  168: *
  169: *     .. Parameters ..
  170:       INTEGER            INB, INBMIN, IXOVER
  171:       PARAMETER          ( INB = 1, INBMIN = 2, IXOVER = 3 )
  172: *     ..
  173: *     .. Local Scalars ..
  174:       LOGICAL            LQUERY
  175:       INTEGER            FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
  176:      $                   NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
  177: *     ..
  178: *     .. External Subroutines ..
  179:       EXTERNAL           DGEQRF, DLAQP2, DLAQPS, DORMQR, DSWAP, XERBLA
  180: *     ..
  181: *     .. External Functions ..
  182:       INTEGER            ILAENV
  183:       DOUBLE PRECISION   DNRM2
  184:       EXTERNAL           ILAENV, DNRM2
  185: *     ..
  186: *     .. Intrinsic Functions ..
  187:       INTRINSIC          INT, MAX, MIN
  188: *     ..
  189: *     .. Executable Statements ..
  190: *
  191: *     Test input arguments
  192: *  ====================
  193: *
  194:       INFO = 0
  195:       LQUERY = ( LWORK.EQ.-1 )
  196:       IF( M.LT.0 ) THEN
  197:          INFO = -1
  198:       ELSE IF( N.LT.0 ) THEN
  199:          INFO = -2
  200:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  201:          INFO = -4
  202:       END IF
  203: *
  204:       IF( INFO.EQ.0 ) THEN
  205:          MINMN = MIN( M, N )
  206:          IF( MINMN.EQ.0 ) THEN
  207:             IWS = 1
  208:             LWKOPT = 1
  209:          ELSE
  210:             IWS = 3*N + 1
  211:             NB = ILAENV( INB, 'DGEQRF', ' ', M, N, -1, -1 )
  212:             LWKOPT = 2*N + ( N + 1 )*NB
  213:          END IF
  214:          WORK( 1 ) = LWKOPT
  215: *
  216:          IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
  217:             INFO = -8
  218:          END IF
  219:       END IF
  220: *
  221:       IF( INFO.NE.0 ) THEN
  222:          CALL XERBLA( 'DGEQP3', -INFO )
  223:          RETURN
  224:       ELSE IF( LQUERY ) THEN
  225:          RETURN
  226:       END IF
  227: *
  228: *     Quick return if possible.
  229: *
  230:       IF( MINMN.EQ.0 ) THEN
  231:          RETURN
  232:       END IF
  233: *
  234: *     Move initial columns up front.
  235: *
  236:       NFXD = 1
  237:       DO 10 J = 1, N
  238:          IF( JPVT( J ).NE.0 ) THEN
  239:             IF( J.NE.NFXD ) THEN
  240:                CALL DSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
  241:                JPVT( J ) = JPVT( NFXD )
  242:                JPVT( NFXD ) = J
  243:             ELSE
  244:                JPVT( J ) = J
  245:             END IF
  246:             NFXD = NFXD + 1
  247:          ELSE
  248:             JPVT( J ) = J
  249:          END IF
  250:    10 CONTINUE
  251:       NFXD = NFXD - 1
  252: *
  253: *     Factorize fixed columns
  254: *  =======================
  255: *
  256: *     Compute the QR factorization of fixed columns and update
  257: *     remaining columns.
  258: *
  259:       IF( NFXD.GT.0 ) THEN
  260:          NA = MIN( M, NFXD )
  261: *CC      CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
  262:          CALL DGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
  263:          IWS = MAX( IWS, INT( WORK( 1 ) ) )
  264:          IF( NA.LT.N ) THEN
  265: *CC         CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA,
  266: *CC  $                   TAU, A( 1, NA+1 ), LDA, WORK, INFO )
  267:             CALL DORMQR( 'Left', 'Transpose', M, N-NA, NA, A, LDA, TAU,
  268:      $                   A( 1, NA+1 ), LDA, WORK, LWORK, INFO )
  269:             IWS = MAX( IWS, INT( WORK( 1 ) ) )
  270:          END IF
  271:       END IF
  272: *
  273: *     Factorize free columns
  274: *  ======================
  275: *
  276:       IF( NFXD.LT.MINMN ) THEN
  277: *
  278:          SM = M - NFXD
  279:          SN = N - NFXD
  280:          SMINMN = MINMN - NFXD
  281: *
  282: *        Determine the block size.
  283: *
  284:          NB = ILAENV( INB, 'DGEQRF', ' ', SM, SN, -1, -1 )
  285:          NBMIN = 2
  286:          NX = 0
  287: *
  288:          IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
  289: *
  290: *           Determine when to cross over from blocked to unblocked code.
  291: *
  292:             NX = MAX( 0, ILAENV( IXOVER, 'DGEQRF', ' ', SM, SN, -1,
  293:      $           -1 ) )
  294: *
  295: *
  296:             IF( NX.LT.SMINMN ) THEN
  297: *
  298: *              Determine if workspace is large enough for blocked code.
  299: *
  300:                MINWS = 2*SN + ( SN+1 )*NB
  301:                IWS = MAX( IWS, MINWS )
  302:                IF( LWORK.LT.MINWS ) THEN
  303: *
  304: *                 Not enough workspace to use optimal NB: Reduce NB and
  305: *                 determine the minimum value of NB.
  306: *
  307:                   NB = ( LWORK-2*SN ) / ( SN+1 )
  308:                   NBMIN = MAX( 2, ILAENV( INBMIN, 'DGEQRF', ' ', SM, SN,
  309:      $                    -1, -1 ) )
  310: *
  311: *
  312:                END IF
  313:             END IF
  314:          END IF
  315: *
  316: *        Initialize partial column norms. The first N elements of work
  317: *        store the exact column norms.
  318: *
  319:          DO 20 J = NFXD + 1, N
  320:             WORK( J ) = DNRM2( SM, A( NFXD+1, J ), 1 )
  321:             WORK( N+J ) = WORK( J )
  322:    20    CONTINUE
  323: *
  324:          IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
  325:      $       ( NX.LT.SMINMN ) ) THEN
  326: *
  327: *           Use blocked code initially.
  328: *
  329:             J = NFXD + 1
  330: *
  331: *           Compute factorization: while loop.
  332: *
  333: *
  334:             TOPBMN = MINMN - NX
  335:    30       CONTINUE
  336:             IF( J.LE.TOPBMN ) THEN
  337:                JB = MIN( NB, TOPBMN-J+1 )
  338: *
  339: *              Factorize JB columns among columns J:N.
  340: *
  341:                CALL DLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
  342:      $                      JPVT( J ), TAU( J ), WORK( J ), WORK( N+J ),
  343:      $                      WORK( 2*N+1 ), WORK( 2*N+JB+1 ), N-J+1 )
  344: *
  345:                J = J + FJB
  346:                GO TO 30
  347:             END IF
  348:          ELSE
  349:             J = NFXD + 1
  350:          END IF
  351: *
  352: *        Use unblocked code to factor the last or only block.
  353: *
  354: *
  355:          IF( J.LE.MINMN )
  356:      $      CALL DLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
  357:      $                   TAU( J ), WORK( J ), WORK( N+J ),
  358:      $                   WORK( 2*N+1 ) )
  359: *
  360:       END IF
  361: *
  362:       WORK( 1 ) = IWS
  363:       RETURN
  364: *
  365: *     End of DGEQP3
  366: *
  367:       END

CVSweb interface <joel.bertrand@systella.fr>