Annotation of rpl/lapack/lapack/dgelsy.f, revision 1.9

1.9     ! bertrand    1: *> \brief <b> DGELSY solves overdetermined or underdetermined systems for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGELSY + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsy.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsy.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsy.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
        !            22: *                          WORK, LWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
        !            26: *       DOUBLE PRECISION   RCOND
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            JPVT( * )
        !            30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DGELSY computes the minimum-norm solution to a real linear least
        !            40: *> squares problem:
        !            41: *>     minimize || A * X - B ||
        !            42: *> using a complete orthogonal factorization of A.  A is an M-by-N
        !            43: *> matrix which may be rank-deficient.
        !            44: *>
        !            45: *> Several right hand side vectors b and solution vectors x can be
        !            46: *> handled in a single call; they are stored as the columns of the
        !            47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
        !            48: *> matrix X.
        !            49: *>
        !            50: *> The routine first computes a QR factorization with column pivoting:
        !            51: *>     A * P = Q * [ R11 R12 ]
        !            52: *>                 [  0  R22 ]
        !            53: *> with R11 defined as the largest leading submatrix whose estimated
        !            54: *> condition number is less than 1/RCOND.  The order of R11, RANK,
        !            55: *> is the effective rank of A.
        !            56: *>
        !            57: *> Then, R22 is considered to be negligible, and R12 is annihilated
        !            58: *> by orthogonal transformations from the right, arriving at the
        !            59: *> complete orthogonal factorization:
        !            60: *>    A * P = Q * [ T11 0 ] * Z
        !            61: *>                [  0  0 ]
        !            62: *> The minimum-norm solution is then
        !            63: *>    X = P * Z**T [ inv(T11)*Q1**T*B ]
        !            64: *>                 [        0         ]
        !            65: *> where Q1 consists of the first RANK columns of Q.
        !            66: *>
        !            67: *> This routine is basically identical to the original xGELSX except
        !            68: *> three differences:
        !            69: *>   o The call to the subroutine xGEQPF has been substituted by the
        !            70: *>     the call to the subroutine xGEQP3. This subroutine is a Blas-3
        !            71: *>     version of the QR factorization with column pivoting.
        !            72: *>   o Matrix B (the right hand side) is updated with Blas-3.
        !            73: *>   o The permutation of matrix B (the right hand side) is faster and
        !            74: *>     more simple.
        !            75: *> \endverbatim
        !            76: *
        !            77: *  Arguments:
        !            78: *  ==========
        !            79: *
        !            80: *> \param[in] M
        !            81: *> \verbatim
        !            82: *>          M is INTEGER
        !            83: *>          The number of rows of the matrix A.  M >= 0.
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[in] N
        !            87: *> \verbatim
        !            88: *>          N is INTEGER
        !            89: *>          The number of columns of the matrix A.  N >= 0.
        !            90: *> \endverbatim
        !            91: *>
        !            92: *> \param[in] NRHS
        !            93: *> \verbatim
        !            94: *>          NRHS is INTEGER
        !            95: *>          The number of right hand sides, i.e., the number of
        !            96: *>          columns of matrices B and X. NRHS >= 0.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in,out] A
        !           100: *> \verbatim
        !           101: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !           102: *>          On entry, the M-by-N matrix A.
        !           103: *>          On exit, A has been overwritten by details of its
        !           104: *>          complete orthogonal factorization.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] LDA
        !           108: *> \verbatim
        !           109: *>          LDA is INTEGER
        !           110: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in,out] B
        !           114: *> \verbatim
        !           115: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           116: *>          On entry, the M-by-NRHS right hand side matrix B.
        !           117: *>          On exit, the N-by-NRHS solution matrix X.
        !           118: *> \endverbatim
        !           119: *>
        !           120: *> \param[in] LDB
        !           121: *> \verbatim
        !           122: *>          LDB is INTEGER
        !           123: *>          The leading dimension of the array B. LDB >= max(1,M,N).
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[in,out] JPVT
        !           127: *> \verbatim
        !           128: *>          JPVT is INTEGER array, dimension (N)
        !           129: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
        !           130: *>          to the front of AP, otherwise column i is a free column.
        !           131: *>          On exit, if JPVT(i) = k, then the i-th column of AP
        !           132: *>          was the k-th column of A.
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[in] RCOND
        !           136: *> \verbatim
        !           137: *>          RCOND is DOUBLE PRECISION
        !           138: *>          RCOND is used to determine the effective rank of A, which
        !           139: *>          is defined as the order of the largest leading triangular
        !           140: *>          submatrix R11 in the QR factorization with pivoting of A,
        !           141: *>          whose estimated condition number < 1/RCOND.
        !           142: *> \endverbatim
        !           143: *>
        !           144: *> \param[out] RANK
        !           145: *> \verbatim
        !           146: *>          RANK is INTEGER
        !           147: *>          The effective rank of A, i.e., the order of the submatrix
        !           148: *>          R11.  This is the same as the order of the submatrix T11
        !           149: *>          in the complete orthogonal factorization of A.
        !           150: *> \endverbatim
        !           151: *>
        !           152: *> \param[out] WORK
        !           153: *> \verbatim
        !           154: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           155: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[in] LWORK
        !           159: *> \verbatim
        !           160: *>          LWORK is INTEGER
        !           161: *>          The dimension of the array WORK.
        !           162: *>          The unblocked strategy requires that:
        !           163: *>             LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
        !           164: *>          where MN = min( M, N ).
        !           165: *>          The block algorithm requires that:
        !           166: *>             LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
        !           167: *>          where NB is an upper bound on the blocksize returned
        !           168: *>          by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
        !           169: *>          and DORMRZ.
        !           170: *>
        !           171: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           172: *>          only calculates the optimal size of the WORK array, returns
        !           173: *>          this value as the first entry of the WORK array, and no error
        !           174: *>          message related to LWORK is issued by XERBLA.
        !           175: *> \endverbatim
        !           176: *>
        !           177: *> \param[out] INFO
        !           178: *> \verbatim
        !           179: *>          INFO is INTEGER
        !           180: *>          = 0: successful exit
        !           181: *>          < 0: If INFO = -i, the i-th argument had an illegal value.
        !           182: *> \endverbatim
        !           183: *
        !           184: *  Authors:
        !           185: *  ========
        !           186: *
        !           187: *> \author Univ. of Tennessee 
        !           188: *> \author Univ. of California Berkeley 
        !           189: *> \author Univ. of Colorado Denver 
        !           190: *> \author NAG Ltd. 
        !           191: *
        !           192: *> \date November 2011
        !           193: *
        !           194: *> \ingroup doubleGEsolve
        !           195: *
        !           196: *> \par Contributors:
        !           197: *  ==================
        !           198: *>
        !           199: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n 
        !           200: *>    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
        !           201: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
        !           202: *>
        !           203: *  =====================================================================
1.1       bertrand  204:       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                    205:      $                   WORK, LWORK, INFO )
                    206: *
1.9     ! bertrand  207: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  208: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    209: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  210: *     November 2011
1.1       bertrand  211: *
                    212: *     .. Scalar Arguments ..
                    213:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                    214:       DOUBLE PRECISION   RCOND
                    215: *     ..
                    216: *     .. Array Arguments ..
                    217:       INTEGER            JPVT( * )
                    218:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
                    219: *     ..
                    220: *
                    221: *  =====================================================================
                    222: *
                    223: *     .. Parameters ..
                    224:       INTEGER            IMAX, IMIN
                    225:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    226:       DOUBLE PRECISION   ZERO, ONE
                    227:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    228: *     ..
                    229: *     .. Local Scalars ..
                    230:       LOGICAL            LQUERY
                    231:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
                    232:      $                   LWKOPT, MN, NB, NB1, NB2, NB3, NB4
                    233:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
                    234:      $                   SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
                    235: *     ..
                    236: *     .. External Functions ..
                    237:       INTEGER            ILAENV
                    238:       DOUBLE PRECISION   DLAMCH, DLANGE
                    239:       EXTERNAL           ILAENV, DLAMCH, DLANGE
                    240: *     ..
                    241: *     .. External Subroutines ..
                    242:       EXTERNAL           DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET,
                    243:      $                   DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA
                    244: *     ..
                    245: *     .. Intrinsic Functions ..
                    246:       INTRINSIC          ABS, MAX, MIN
                    247: *     ..
                    248: *     .. Executable Statements ..
                    249: *
                    250:       MN = MIN( M, N )
                    251:       ISMIN = MN + 1
                    252:       ISMAX = 2*MN + 1
                    253: *
                    254: *     Test the input arguments.
                    255: *
                    256:       INFO = 0
                    257:       LQUERY = ( LWORK.EQ.-1 )
                    258:       IF( M.LT.0 ) THEN
                    259:          INFO = -1
                    260:       ELSE IF( N.LT.0 ) THEN
                    261:          INFO = -2
                    262:       ELSE IF( NRHS.LT.0 ) THEN
                    263:          INFO = -3
                    264:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    265:          INFO = -5
                    266:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    267:          INFO = -7
                    268:       END IF
                    269: *
                    270: *     Figure out optimal block size
                    271: *
                    272:       IF( INFO.EQ.0 ) THEN
                    273:          IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    274:             LWKMIN = 1
                    275:             LWKOPT = 1
                    276:          ELSE
                    277:             NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
                    278:             NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
                    279:             NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 )
                    280:             NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 )
                    281:             NB = MAX( NB1, NB2, NB3, NB4 )
                    282:             LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS )
                    283:             LWKOPT = MAX( LWKMIN,
                    284:      $                    MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS )
                    285:          END IF
                    286:          WORK( 1 ) = LWKOPT
                    287: *
                    288:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    289:             INFO = -12
                    290:          END IF
                    291:       END IF
                    292: *
                    293:       IF( INFO.NE.0 ) THEN
                    294:          CALL XERBLA( 'DGELSY', -INFO )
                    295:          RETURN
                    296:       ELSE IF( LQUERY ) THEN
                    297:          RETURN
                    298:       END IF
                    299: *
                    300: *     Quick return if possible
                    301: *
                    302:       IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    303:          RANK = 0
                    304:          RETURN
                    305:       END IF
                    306: *
                    307: *     Get machine parameters
                    308: *
                    309:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    310:       BIGNUM = ONE / SMLNUM
                    311:       CALL DLABAD( SMLNUM, BIGNUM )
                    312: *
                    313: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
                    314: *
                    315:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
                    316:       IASCL = 0
                    317:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    318: *
                    319: *        Scale matrix norm up to SMLNUM
                    320: *
                    321:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    322:          IASCL = 1
                    323:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    324: *
                    325: *        Scale matrix norm down to BIGNUM
                    326: *
                    327:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    328:          IASCL = 2
                    329:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    330: *
                    331: *        Matrix all zero. Return zero solution.
                    332: *
                    333:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    334:          RANK = 0
                    335:          GO TO 70
                    336:       END IF
                    337: *
                    338:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
                    339:       IBSCL = 0
                    340:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    341: *
                    342: *        Scale matrix norm up to SMLNUM
                    343: *
                    344:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    345:          IBSCL = 1
                    346:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    347: *
                    348: *        Scale matrix norm down to BIGNUM
                    349: *
                    350:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    351:          IBSCL = 2
                    352:       END IF
                    353: *
                    354: *     Compute QR factorization with column pivoting of A:
                    355: *        A * P = Q * R
                    356: *
                    357:       CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
                    358:      $             LWORK-MN, INFO )
                    359:       WSIZE = MN + WORK( MN+1 )
                    360: *
                    361: *     workspace: MN+2*N+NB*(N+1).
                    362: *     Details of Householder rotations stored in WORK(1:MN).
                    363: *
                    364: *     Determine RANK using incremental condition estimation
                    365: *
                    366:       WORK( ISMIN ) = ONE
                    367:       WORK( ISMAX ) = ONE
                    368:       SMAX = ABS( A( 1, 1 ) )
                    369:       SMIN = SMAX
                    370:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    371:          RANK = 0
                    372:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    373:          GO TO 70
                    374:       ELSE
                    375:          RANK = 1
                    376:       END IF
                    377: *
                    378:    10 CONTINUE
                    379:       IF( RANK.LT.MN ) THEN
                    380:          I = RANK + 1
                    381:          CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    382:      $                A( I, I ), SMINPR, S1, C1 )
                    383:          CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    384:      $                A( I, I ), SMAXPR, S2, C2 )
                    385: *
                    386:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    387:             DO 20 I = 1, RANK
                    388:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    389:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    390:    20       CONTINUE
                    391:             WORK( ISMIN+RANK ) = C1
                    392:             WORK( ISMAX+RANK ) = C2
                    393:             SMIN = SMINPR
                    394:             SMAX = SMAXPR
                    395:             RANK = RANK + 1
                    396:             GO TO 10
                    397:          END IF
                    398:       END IF
                    399: *
                    400: *     workspace: 3*MN.
                    401: *
                    402: *     Logically partition R = [ R11 R12 ]
                    403: *                             [  0  R22 ]
                    404: *     where R11 = R(1:RANK,1:RANK)
                    405: *
                    406: *     [R11,R12] = [ T11, 0 ] * Y
                    407: *
                    408:       IF( RANK.LT.N )
                    409:      $   CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
                    410:      $                LWORK-2*MN, INFO )
                    411: *
                    412: *     workspace: 2*MN.
                    413: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    414: *
1.8       bertrand  415: *     B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
1.1       bertrand  416: *
                    417:       CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
                    418:      $             B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
                    419:       WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) )
                    420: *
                    421: *     workspace: 2*MN+NB*NRHS.
                    422: *
                    423: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    424: *
                    425:       CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    426:      $            NRHS, ONE, A, LDA, B, LDB )
                    427: *
                    428:       DO 40 J = 1, NRHS
                    429:          DO 30 I = RANK + 1, N
                    430:             B( I, J ) = ZERO
                    431:    30    CONTINUE
                    432:    40 CONTINUE
                    433: *
1.8       bertrand  434: *     B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
1.1       bertrand  435: *
                    436:       IF( RANK.LT.N ) THEN
                    437:          CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
                    438:      $                LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ),
                    439:      $                LWORK-2*MN, INFO )
                    440:       END IF
                    441: *
                    442: *     workspace: 2*MN+NRHS.
                    443: *
                    444: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    445: *
                    446:       DO 60 J = 1, NRHS
                    447:          DO 50 I = 1, N
                    448:             WORK( JPVT( I ) ) = B( I, J )
                    449:    50    CONTINUE
                    450:          CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
                    451:    60 CONTINUE
                    452: *
                    453: *     workspace: N.
                    454: *
                    455: *     Undo scaling
                    456: *
                    457:       IF( IASCL.EQ.1 ) THEN
                    458:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    459:          CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    460:      $                INFO )
                    461:       ELSE IF( IASCL.EQ.2 ) THEN
                    462:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    463:          CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    464:      $                INFO )
                    465:       END IF
                    466:       IF( IBSCL.EQ.1 ) THEN
                    467:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    468:       ELSE IF( IBSCL.EQ.2 ) THEN
                    469:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    470:       END IF
                    471: *
                    472:    70 CONTINUE
                    473:       WORK( 1 ) = LWKOPT
                    474: *
                    475:       RETURN
                    476: *
                    477: *     End of DGELSY
                    478: *
                    479:       END

CVSweb interface <joel.bertrand@systella.fr>